
BenchLex:
A Sorted Benchmark for ALEX
Clara Henzinger 1 Alexander Song 2 Savir Basil 3

Andy Huynh 4 Aneesh Raman 4

Manos Athanassoulis 4

1Lycée Français de Vienne (Vienna, Austria) 2High School (Sugar Land, TX)
3Sharon High School (Sharon, MA) 4Boston University (Boston, MA)

Traditional Indexing Methods

Software such as MySQL or Oracle use

Traditional Indexing Methods:

Learned Indexes

Recently, Machine-Learning-based Indexes

were introduced to replace conventional

indexes with the goal of improving perfor-

mance and memory footprint [2]:

One such system is ALEX [1].

Introducing Sortedness

K = number of out-of-order entries

L = maximum displacement of any entry

Example [3]:

References

[1] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do,

Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes Gehrke,

Donald Kossmann, et al. Alex: An updatable adaptive learned index.

In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 969–984, 2020.

[2] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis

Polyzotis. The case for learned index structures. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, pages

489–504, 2018.

[3] Aneesh Raman, Konstantinos Karatsenidis, Subhadeep Sarkar,

Matthaios Olma, and Manos Athanassoulis. Bods: A benchmark on

data sortedness. In Technology Conference on Performance Evaluation

and Benchmarking, pages 17–32. Springer, 2022.

BenchLex

Our Goal: Evaluate how well ALEX in-

dexes exploit sortedness.

Built BenchLex = Python benchmark

that measures the performance of ALEX

for different values of L and K

Created data consisting of 1 million

entries with varying levels of sortedness

using BoDS [3] with and without bulk

loading

Showed results in a heatmap of

sortedness with respect to performance

Our Results

→ Efficiency decreases with sortedness

Loadtime

Time to load 1M entries into ALEX

Bulk loading: First sort all data and then build

index from whole data at once

No bulk loading: Insert one entry after the

other into index

→Worse performance without bulk loading

Inserts per sec

→ Poor performance forK ≤ 70; very similar
with and without bulk loading

Lookups per sec

→Poor when sorted, increases with K;
generally better with bulk loading,

Conclusions

Loading and insertions work well if the

data is almost perfectly sorted or

almost completely unsorted

Lookups are poor when sorted and

improve with degree of unsortedness

Performance does not degrade in the

same way with and without bulk

loading

Raises interesting questions about

machine learning and randomization in

general, and the performance of the

ALEX system in particular

https://github.com/BU-DiSC/BenchLex DISC Lab Boston University clarhenz@bu.edu

https://github.com/BU-DiSC/BenchLex
mailto:clarhenz@bu.edu

