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Traditional Indexing Methods

Software such as MySQL or Oracle use

Traditional Indexing Methods:

Learned Indexes

Recently, Machine-Learning-based Indexes

were introduced to replace conventional

indexes with the goal of improving perfor-

mance and memory footprint [2]:

One such system is ALEX [1].

Introducing Sortedness

K = number of out-of-order entries

L = maximum displacement of any entry

Example [3]:
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BenchLex

Our Goal: Evaluate how well ALEX in-

dexes exploit sortedness.

Built BenchLex = Python benchmark

that measures the performance of ALEX

for different values of L and K

Created data consisting of 1 million

entries with varying levels of sortedness

using BoDS [3] with and without bulk

loading

Showed results in a heatmap of

sortedness with respect to performance

Our Results

→ Efficiency decreases with sortedness

Loadtime

Time to load 1M entries into ALEX

Bulk loading: First sort all data and then build

index from whole data at once

No bulk loading: Insert one entry after the

other into index

→Worse performance without bulk loading

Inserts per sec

→ Poor performance forK ≤ 70; very similar
with and without bulk loading

Lookups per sec

→Poor when sorted, increases with K;
generally better with bulk loading,

Conclusions

Loading and insertions work well if the

data is almost perfectly sorted or

almost completely unsorted

Lookups are poor when sorted and

improve with degree of unsortedness

Performance does not degrade in the

same way with and without bulk

loading

Raises interesting questions about

machine learning and randomization in

general, and the performance of the

ALEX system in particular
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