
Automated Classification of BOSTON NIVERSITY **Electrocardiogram Data Using Machine Learning** Sonya Hong^{1,2}, Burak Aksar², Efe Sencan², Yin-Ching (William) Lee², Prof. Ayse Coskun² ¹Folsom High School, 1655 Iron Point Rd, Folsom, CA 95630; ²Electrical and Computer Engineering Department, Boston University, 8 St Mary's St, Boston, MA 02215

Introduction **Background:**

Utilizing PeacLab's supervised machine learning (ML) framework¹ that:

• Uses multivariate time series data from large-scale computing systems to diagnose performance anomalies

• Extracts statistical features and then selects important features to reduce data dimensionality

• Trains tree-based ML models **Problem:**

- Investigating medical data manually can be time-consuming and lead to delays in diagnosis
- ML models can automate the investigation process while maintaining high accuracy
- Drawbacks of deep learning (DL) models:
 - **Require large quantities of labeled data** Ο
 - Costly to train and maintain in a resource limited environment

Goal:

• Determine the applicability of Peaclab's supervised ML framework to a public medical dataset of electrocardiogram (ECG) • Each exam can have multiple anomalies

3. Evaluate Model:

- Perform the same feature extraction, scaling, and selection used to process training dataset
- Compare the predicted labels and true labels for each anomaly type separately
- Report precision, recall, and F1-score for each anomaly

	1dAVb	RBBB	LBBB	SB	AF	ST
Pred	0	1	1	0	1	0
Truth	0	0	1	0	0	1

Results ECG Anomaly **F1-Score** Precision Recall Baseline Baseline LGBM LGBM LGBM Baseline 1dAVb 0.48 0.87 0.50 0.93 0.90 0.49

Overall: Our model exhibited poorer performance compared to the DL-baseline model⁴

exams

• Determine if any of 6 ECG anomalies (1dAVb, RBBB, LBBB, SB, AF, ST) are present based on a patient's ECG exam data

RBBB	0.87	0.90	0.78	1.00	0.82	0.94
LBBB	1.00	1.00	0.88	1.00	0.93	1.00
SB	0.99	0.83	0.72	0.94	0.80	0.88
AF	0.49	1.00	0.49	0.77	0.49	0.87
ST	0.48	0.95	0.50	0.97	0.49	0.96

Potential Explanation: Only 15% of the ECG data used to train the DL-baseline model was public

O Better Performance by LGBM

O Similar Performance (about <10% difference)

O Better Performance by DL-Baseline⁴

Discussion & Future Work

Discussion:

- Existing model would not be able to be implemented in real-world situations as the model only correctly identifies 49% to 88% of anomalies
- Potentially fatal misdiagnosis
- Proof of concept \rightarrow if improved, similar models could be utilized in the future
 - Tree-based classifiers can be faster and less resource intensive compared to DL-models

Future Work:

- Train the model with more data

References

- [1] Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung, V. J., ... & Coskun, A. K. (2018). Online diagnosis of performance variation in HPC systems using machine learning. IEEE Transactions on Parallel and Distributed Systems, 30(4), 883-896.
- [2] Ribeiro, Antonio H; Ribeiro, Manoel Horta; Paixão, Gabriela M.; Oliveira, Derick M.; Gomes, Paulo R.; Canazart, Jéssica A.; Ferreira, Milton P.; Andersson, Carl R.; Macfarlane, Peter W.; Meira Jr., Wagner; Schön, Thomas B.; Ribeiro, Antonio Luiz P. Code-test: An Annotated 12-lead ECG Dataset, 2020. https://doi.org/10.5281/zenodo.3765780.
- [3] Ribeiro, Antônio H.; Paixao, Gabriela M.M.; Lima, Emilly M.; Horta Ribeiro, Manoel; Pinto Filho, Marcelo M.; Gomes, Paulo R.; Oliveira, Derick M.; Meira Jr, Wagner; Schon, Thömas B; Ribeiro, Antonio Luiz P. CODE-15%: A Large Scale Annotated Dataset of 12-lead Ecgs, 2021. https://doi.org/10.5281/zenodo.4916206.
- [4] Ribeiro, A. H., Ribeiro, M. H., Paixão, G. M., Oliveira, D. M., Gomes, P. R., Canazart, J. A., ... & Ribeiro, A. L. P. (2020). Automatic diagnosis of the 12-lead ECG using a deep neural network. Nature communications, 11(1), 1760.

• Experiment with hyperparameter tuning

Thank you to: • Burak Aksar, William Lee, Efe Sencan, and Professor Coskun for guiding and supporting me throughout this internship

• The RISE program and Boston University for allowing me this wonderful,

