
Real Time Needle Tracking with NeedleGAN:
A CGAN and Mask-RCNN based Architecture for Automatic Generation, Segmentation, 

and Localization of  Physical Needles for MR-guided Percutaneous Hepatic 
Interventions

Gopalaniruddh S. Tadinada1, 2, Junichi Tokuda2

DuPont Manual High School, 120 W Lee St, Louisville, KY 402081

Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 022152

Background

Engineering Goals

Acknowledgements

References
References:

1. Li, Xinzhou, et al. “Physics-Driven Mask R-CNN for Physical Needle Localization in MRI-Guided 
Percutaneous Interventions.” IEEE Access, vol. 9, 2021, pp. 161055–161068, 
https://doi.org/10.1109/access.2021.3128163. 

2. Liu, Yao, and Lianxin Liu. “Changes in the Epidemiology of Hepatocellular Carcinoma in Asia.” 
Cancers, 15 Sept. 2022, www.ncbi.nlm.nih.gov/pmc/articles/PMC9496757/. 

3. “Liver Cancer Survival Rates: Cancer of the Liver Survival Rates.” Cancer of the Liver Survival Rates | 
American Cancer Society, www.cancer.org/cancer/types/liver-cancer/detection-diagnosis-
staging/survival-rates.html. Accessed 7 Aug. 2023. 

4. “Liver Cancer.” Mayo Clinic, 28 Apr. 2023, www.mayoclinic.org/diseases-conditions/liver-
cancer/symptoms-causes/syc-20353659. 

5. Mehrtash, Alireza, et al. “Automatic Needle Segmentation and Localization in MRI with 3-D 
Convolutional Neural Networks: Application to MRI-Targeted Prostate Biopsy.” IEEE Transactions on 
Medical Imaging, vol. 38, no. 4, 2019, pp. 1026–1036, https://doi.org/10.1109/tmi.2018.2876796. 

6. Vernuccio, Federica, et al. “Negative Biopsy of Focal Hepatic Lesions: Decision Tree Model for 
Patient Management.” American Journal of Roentgenology, vol. 212, no. 3, 2019, pp. 677–685, 
https://doi.org/10.2214/ajr.18.20268. 

MR-Guided Percutaneous Liver Biopsy 

Acknowledgments:
I would like to give my sincere thanks to Dr. Junichi Tokuda and Mariana Bernarderes from the 
Surgical Planning Laboratory, part of the National Center for Image Guided Therapy, Harvard 
Medical School and Brigham and Women’s Hospital, for providing me with resources over the last 6 
weeks to conduct this project. I would also like to thank the RISE program for giving me this 
opportunity.

Generate a synthetic dataset that can accurately recreate single slice MR induced needle 
artifacts

Create an algorithm to automatically localize the position of the artifact and distinguish it 
from surrounding tissue

Create a client-side web application that facilitates easy device usage and connection to the 
screening model 

Synthetic Data Generation - CGAN

Synthetic Data Generation Results

Needle Localization – Mask RCNN 

Validation Dataset Preparation

Needle Localization Results

Conclusions

Liver Cancer can be detrimental to major digestive 
organs and result in life threatening conditions. In 
this past year, Liver Cancer saw an increase of 
900,000 cases and 830,000 deaths worldwide (2). 
The surrounding hepatic portal vein system and 
lymph nodes make the spread of cancerous cells to 
multiple organs much easier resulting in a 5 year 
survival rate of just 18% (3), making it one of the 
most deadly diseases today.

Figure 1 (Left): Visualization of the digestive tract & 
organs, as well as the HPVS and Lymphatic vessels in 
close proximity, with Liver cancer having a high incidence 
rate. Source: (Ashktorab 2017)

Figure 2: Ultrasound Guided Percutaneous Liver Biopsy
Source: (Kumar 2019)

Figure 3: Representation of different levels of liver 
cancer, the rapid progression, and aggressive behavior. 
Source: (Armaghany 2012)

The current definitive confirmatory test for 
liver cancer is a percutaneous liver biopsy, 
where a small needle is inserted through the 
stomach and into the liver in order to remove 
a small portion of the tissue for analysis. In 
most cases this biopsy is guided by 
ultrasound and randomly samples small 
sections of the liver, resulting in the test 
missing aggressive tumors. In fact, the false 
negative rate of US-guided percutaneous 
liver biopsies reaches 30%.
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Figure 4: (a) The patient is placed in the supine position in the MRI gantry, and his legs are elevated to allow for 
transperineal access. The skin of the perineum is prepared and draped in a sterile manner, and the needle guidance 
template is positioned. (b) and (c) Axial and coronal views of intraprocedural T2-W MRI with needle tip marked by 
white arrow. (d) 3D rendering of the needle (blue), segmented by my method, and visualized relative to the liver, and 
an MRI cross-section that is orthogonal to the plane containing the needle tip.

MRI has actually demonstrated value in improving guided liver biopsies as MRI can identify 
suspicious masses, thus requiring less cores of tissue, and revealing a significantly higher ratio 
of cancer involvement to tissue core. Advances in real-time MRI also allow physicians to check 
the placement and trajectory of the needle compared to the location of the suspicious mass, 
and make adjustments accordingly. 

9mm

Real time tracking of the needle poses a 
few challenges. Parts of a needle under 
the MRI appear different from scan to 
scan, and is also difficult to distinguish 
from nearby tissue as can be seen in this 
image. Secondly, due to the substantially 
different magnetic resonance properties 
of the inserted needle and surrounding 
tissue, a loss of signal is apparent around 
the needle which is known as the needle 
artifact. According to studies, the 
discrepancy of the true needle position 
from the artifact can extend 9mm 
longitudinally, and display extreme 
curvature in the direction of B0 magnetic 
field. The size of early stage liver lesions is 
<20 millimeters, which means that in 
many cases it is unknown as to whether 
the needle hit the lesion or not. 

Figure 5: Needle Artifact from intraoperative 
MRI scan of percutaneous liver biopsy.
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- Tuning the GAN to focus on generating needle artifacts in anatomically correct positions, instead 
of randomly, in order to avoid scans where needles are going through other organs for example, 
kidneys or the spine

- I would also look to train my model to determine the slice that contains the needle tip in it, in 
order make my single slice model more accurate

- I would also look to generate volumetric data in order to create a model that can determine true 
needle position without assuming the needle is perfectly aligned with the MRI scan plane

- Lastly, I hope to implement this tracking algorithm as an extension in 3D Slicer so that it can be 
tested during real patient interventions

Figure 6:  The architecture of our 
Generative Adversarial Network, 
generator, discriminator, inputs and 
outputs.

The amount of available data has to be 
augmented synthetically to be sufficient. 
This is done through the developed 
Conditional Generative Adversarial 
Network or CGAN. The way that CGAN 
works is through 2 Convolutional neural 
networks - one generator, and one 
discriminator. Input images are passed into 
the generator which generates translated 
version of the image. The discriminator is 
trained to distinguish between real paired 
images, and fake paired images. 
Throughout the training process the 
generator and discriminator compete as 
the generator learns to generate fake 
images to trick the discriminator. By the 
end of the training loop the generator 
should be able to generate synthetic 
images that are indistinguishable from real 
images. the needle hit the lesion or not.  
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Localization

The needle tip is defined by the 
model as the edge of the 
bounding box located inside the 
liver, and the insertion angle is 
the angle defined by the needle 
tip and the vertice located 
diagonally. The segmentation 
mask of the needle feature is 
not as relevant.

dxy 0 10 20 30 40 50 60 70 80 90
Mean 0.960485077 1.720938676 1.07298848 0.732430495 0.732444438 1.295879564 1.929349725 1.35629876 1.242935079 0.658892452

SD 0.257841106 0.128542209 0.09556382 0.232209346 0.195622407 0.350076533 0.324222092 0.25120663 0.135880362 0.173369315
Max 1.674722002 2.360238544 1.45902335 1.056982376 0.890452548 1.960346128 2.479238544 1.82445096 1.539640014 0.925679552

dΘ 0 10 20 30 40 50 60 70 80 90
Mean -0.2967234 -1.04109891 -0.122675 0.946445713 0.031685109 -0.870016328 0.577980691 -0.5093571 -0.730241232 -0.53733076

SD 0.0752166 0.22748744 0.066409 0.35375871 0.055306544 0.295996467 0.128773519 0.3224709 -0.225831052 -0.23198311
Max 1.0433562 1.84205615 0.430556 1.50437455 0.304280834 1.538600844 1.125609037 1.1925506 1.084509442 0.98022739

Success 
Rate 0 10 20 30 40 50 60 70 80 90

dxy<1.37m
m or dΘ<1 0.97 0.75 1 0.83 1 0.77 0.88 0.87 0.92 1

Table 1: Table for needle tip localization results. dxy represents the Euclidean distance between the 
predicted needle tip and the true needle tip. Mean, Standard Deviation, and maximum difference for dxy 
are listed for each angle. 

Table 2: Table for needle axis localization results. dΘ represents the angle between the predicted needle 
mask and the true needle axis. Mean, Standard Deviation, and maximum difference for dΘ are listed for 
each angle. 

Table 3: Table for needle localization success rate. Success rate is defined as the Euclidean distance 
between the predicted needle tip and true needle tip being less than 1.37mm (1 pixel), or the difference 
between the predicted needle axis and true needle axis being less than 1°.

Figure 8: Physical Needle Localization through Mask RCNN Architecture

Figure 7: Visualizing the losses of the 
generator (light blue) and discriminator 
(dark blue) throughout the training process 
as the epochs increase. The generator loss 
increased during the beginning of the 
training loop until the 50th epoch, after 
which it significantly decreased, which 
signifies that it started learning the 
distribution of data in the images at the 
50th epoch. The discriminator and 
generator loss should be contrasting 
meaning that when the generator loss 
goes up/down, the discriminator loss 
should go down/up respectively.

Figure 8: Visualizing the images generated 
by the GAN at the end of the training loop. 
The 3 images in the top row are binary 
masks passed into the GAN. The images in 
the middle row are generated by the GAN. 
The images in the last row are the ground 
truth images which are paired to the 
ground truth binary masks. Upon visual 
inspection the generated images look 
perfectly alike to the ground truth images. 
This is supported by the SSIM (structural 
similarity index) of the generated training 
dataset against the original dataset 
preserved for validation, since it is 0.944 
average with a 0.02 standard deviation.

Figure 9: 
Preparing the 
Validation 
Dataset by 
acquiring 
needle 
artifacts at 
various angles.


