BOSTON JNIVERSITY

Efficient 2D Image Reconstruction with Modified CM²Net: Enhancing Fluorescence Microscopy for Large-Scale Biological Dynamics Jamin Xie^{1,2}, Qianwan Yang², Lei Tian²

Valley Christian High School, 100 Skyway Dr, San Jose, CA 95111¹

Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's Street, Boston, MA 02215²

Introduction

- Fluorescence microscopy is indispensable for studying biological structures
- Conventional optics suffers from the trade-off between field of view (FOV), resolution, and miniaturization
- Solution: combine miniature optics and advanced computational algorithms with Computational Miniature Mesoscope (CM²) and CM²Net for high-quality 3D reconstruction
- Linear shift-variant (LSV) model¹ characterizes realistic shift-variant point spread functions (PSFs) and generates large-scale fluorescent bead data
- Present Modified CM²Net for accurate and efficient 2D image reconstruction

$CM^2 V2^{[2]}$

- ✤ 3x3 Microlens array (MLA) to
- acquire multiple views
- Results in strong multiplexing
- between neighboring views
- Enables large FOV
- CM²Net (2D)
- ✤ 20 Res-Blocks per net: use normalization for variance
- stabilization to speed up training convergence³
- Training was conducted for for a max of 150 epochs or 48 hours
- Hyperparameter tuning

Methods

- Data Augmentation (training)
 - Random patch sampling (256x256): reduce
 - computational complexity
 - Mixed Poisson-Gaussian noise

