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INTRODUCTION

* In the rapidly evolving digital landscape, online advertising plays a pivotal role
in promoting products and services to the target audience
» Display Ads and the generalized assighment problem (GAP) are two
widely studied online packing problems in this domain
» Both involve the immediate allocation of ad impressions to budget-
constrained advertisers as impressions arrive in real-time
 Advertisers value users differently based on search queries or
demographic data
» Traditional worst-case
algorithms are optimal in theory
but might act overly cautious in

impressions, ¢ advertisers, a
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* Algorithm 1 bypasses the strong lower bound on the worst-case competitive ratio
* Algorithm 1 outperforms the random-mixture algorithm

» The exponential averaging thresholds (top) outperform the minimum thresholds (bottom)

DISCUSSION/CONCLUSIONS

improves the performance beyond the worst-case
Future Work
* Improve the consistency of the performance
« Some predictors do not always perform better than the worst-case
 Test different LP solvers
20 advertisers and 400 impressions of 20 types takes CVXOPT ~12 seconds
» Test on real-world data

A synthetic instance of 10 advertisers, budgets B, € [5, 20], and 100 impressions of 10 types

METHODS
Algorithm 1
* Input: Robustness-consistency trade-off parameter a € [1, «), advertiser budgets,
B, e N

Define the constants B :=min, B, e; := (1 + 1/ B)%, and a; := B (e - 1)
For each advertiser, q, initialize 5, < 0

allocate rto a Ul
and remove d's
05 (Waprp): = Baprp)s least valuable thresholds, g,

WaExp): = :Ba(EXP)} i , end for
impression

for all arriving Aerp) = PRD(?)
AExp) = argmax, {

impressions, ¢
p Wat-ﬁa}

a = argmax{

Incorporates predictions in the primal-dual algorithm with free disposal [2]
A larger value of a means that we trust the prediction more
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Fig. 2 An illustration of the robustness-consistency trade-off of Algorithm 1 for various values of « and budgets B.

Predictors
« Optimum Solution (OPT): We solve the primal linear program (LP)
» Random corruption: We reallocate to randomly chosen advertisers
» Biased corruption: We reallocate according to a random permutation
* Dual Base: We solve the dual LP on a fraction of the impressions to obtain {£,},
then allocate impressions to advertisers that maximize the discounted gain,
War = Pa
* Previous Day: We solve the dual LP on impressions from the previous day to
obtain {#,}, then allocate impressions to advertisers that maximize the
discounted gain, w,, - S,
Synthetic Instances
« We generate advertisers' valuations for impression types by sampling from an
exponential distribution
» We sample the same number of impressions from each type, then sort them
by ascending order of display times from a Gaussian distribution
« We equip advertisers with fixed budgets

Testing
» We use two important measures for the performance of the
Fig. 3 Two | ith
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consistency (left)
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a. We run the
algorithms 5 times
and report
average for both
algorithms and
the standard
deviation only for
our algorithm, to
avoid clutter.
g=1/a.

» The robustness ALG/OPT indicates how well the algorithm
performs against the optimum solution

» The consistency ALG/PRD measures how close the algorithm
gets to the prediction’s objective value

» We test a variety of implementations on a variety of synthetic
instances
» We test three algorithms, five predictors, and two thresholds
» We test on varying advertisers, budgets, impressions, etc.
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We implement a learning-augmented algorithm for Display Ads and GAP with free disposal that
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