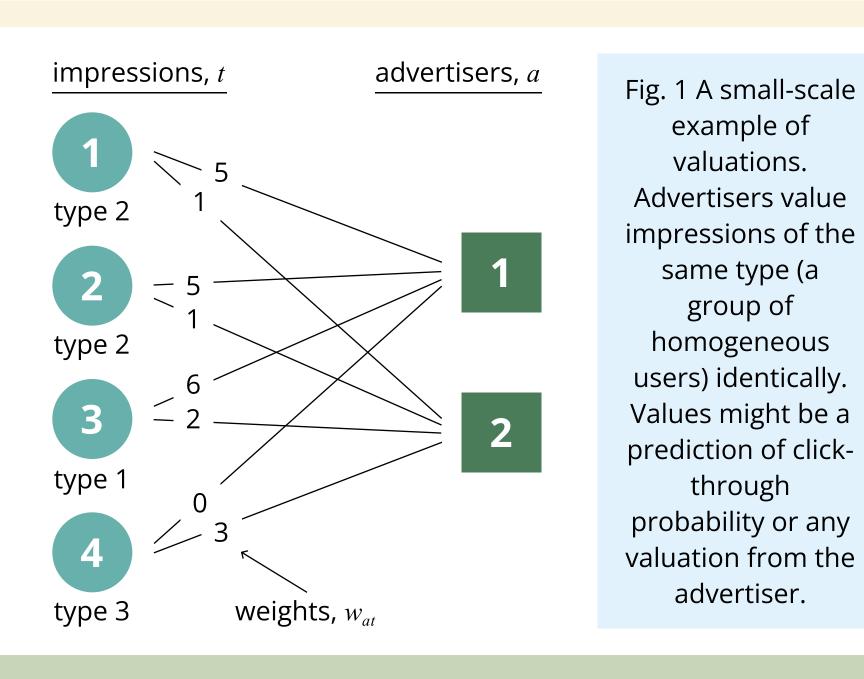


Online Ad Allocation with Predictions Michelle Zhou^{1,2}, Alina Ene²

Lynbrook High, 1280 Johnson Ave, San Jose, CA 95129¹; Boston University, Boston, MA 02215²

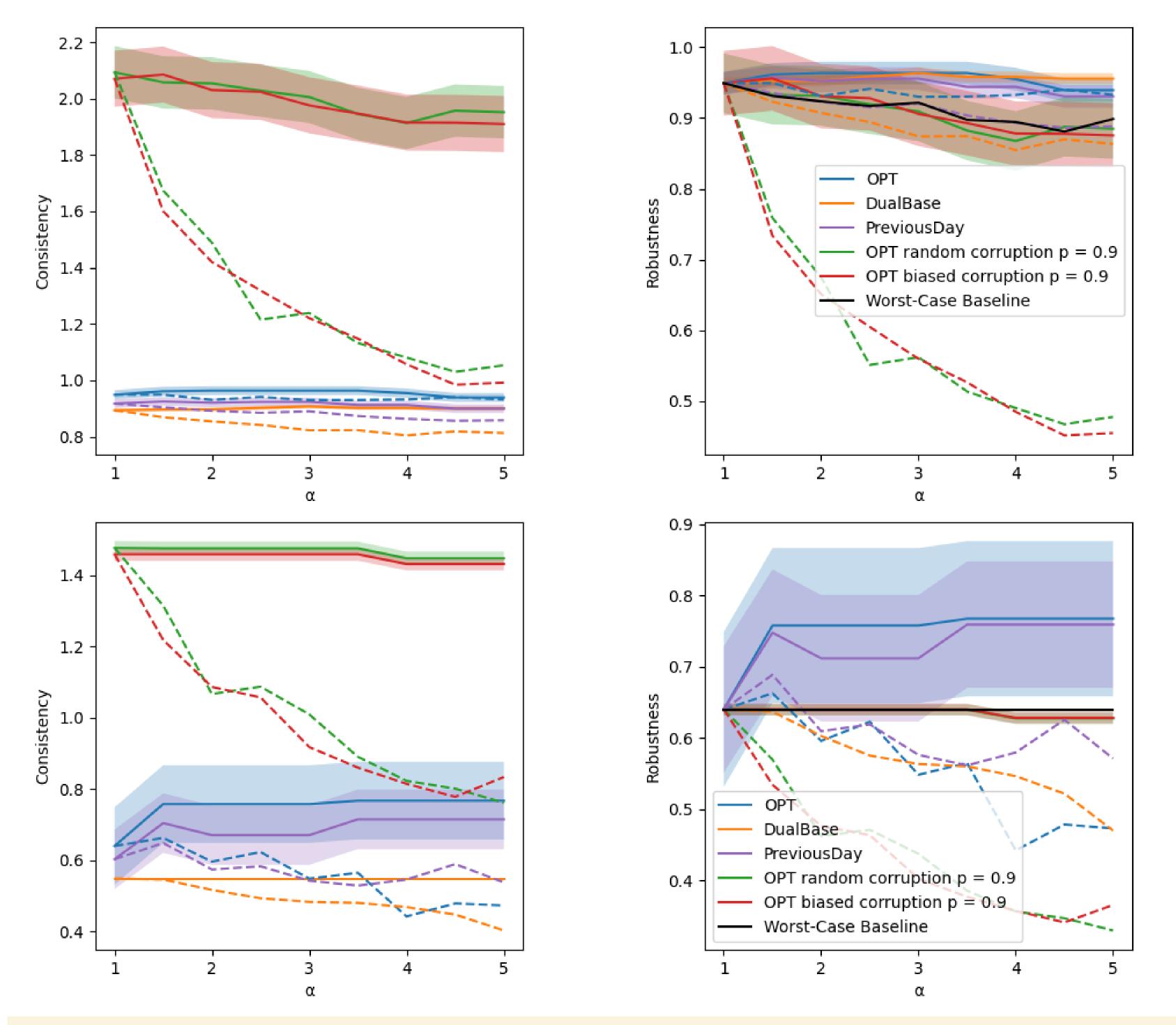
INTRODUCTION	METHODS
 In the rapidly evolving digital landscape, online advertising plays a pivotal role in promoting products and services to the target audience Display Ads and the generalized assignment problem (GAP) are two widely studied online packing problems in this domain Both involve the immediate allocation of ad impressions to budget- 	Algorithm 1• Input: Robustness-consistency trade-off parameter $\alpha \in [1, \infty)$, advertiser budgets, $B_a \in \mathbb{N}$ • Define the constants $B := \min_a B_a$, $e_B := (1 + 1 / B)^B$, and $\alpha_B := B (e_B^{\alpha/B} - 1)$ • For each advertiser, a , initialize $\beta_a \leftarrow 0$
constrained advertisers as impressions arrive in real-time • Advertisers value users differently based on search queries or	for all arriving $a_{(PRD)} = PRD(t) \qquad a = \operatorname{argmax}_{\{a_{(PRD)} = \operatorname{argmax}_{a}\}} \qquad a = \operatorname{argmax}_{\{a_{(PRD)} t} - \beta_{a(PRD)}\}}, \qquad allocate t to a \\ and remove a's \\ b = \operatorname{thresholds}, \beta_{a}$

- - demographic data
- Traditional worst-case algorithms are optimal in theory but might act overly cautious in practice due to the predictable nature of real-world data
- We implement an algorithm [1] for both problems that incorporates **machine-learned** predictions to improve performance beyond the worst case



RESULTS

--- Random Mixture: Run the worst-case algorithm for some parameter $q \in [0, 1]$ and follow the prediction exactly for 1 - q



- the shous, p_c impressions, t least valuable $W_{at} - \beta_a$ $w_{a(EXP)t} - \beta_{a(EXP)}$ end for impression
- Incorporates predictions in the primal-dual algorithm with free disposal [2]
- A larger value of α means that we trust the prediction more

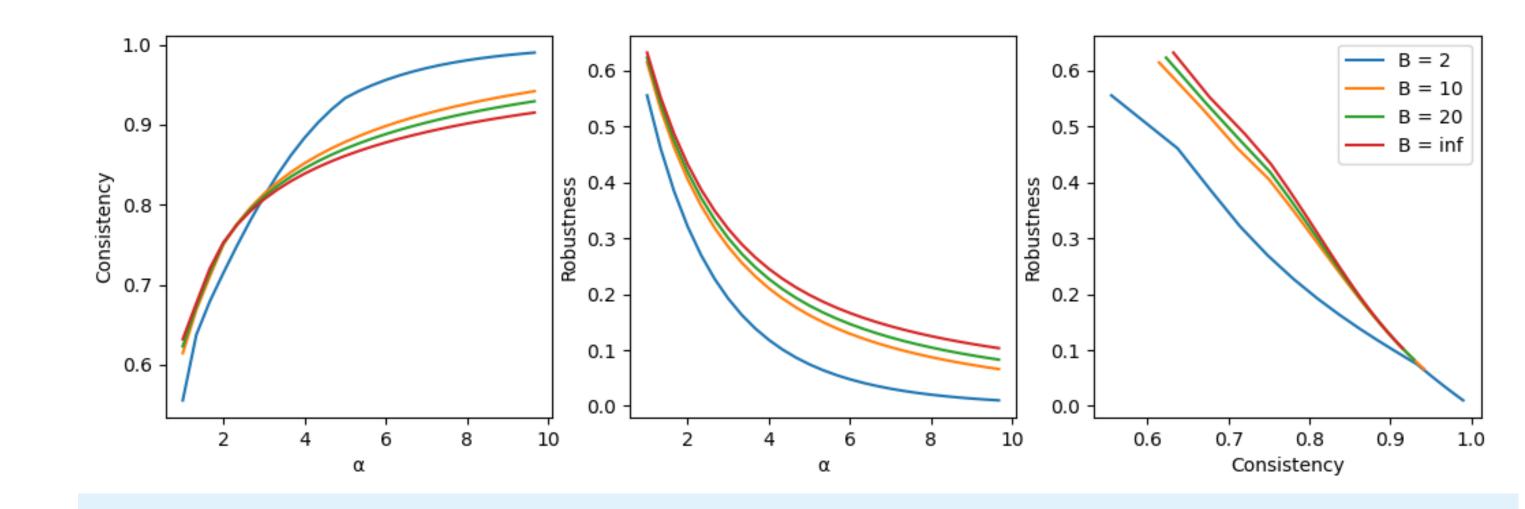


Fig. 2 An illustration of the robustness-consistency trade-off of Algorithm 1 for various values of α and budgets B.

Predictors

and report

average for both

algorithms and

the standard

deviation only for

our algorithm, to

avoid clutter.

 $q = 1 / \alpha$.

- **Optimum Solution (OPT)**: We solve the primal linear program (LP)
 - Random corruption: We reallocate to randomly chosen advertisers
 - Biased corruption: We reallocate according to a random permutation
- **Dual Base**: We solve the dual LP on a fraction of the impressions to obtain $\{\beta_a\}_{a'}$ then allocate impressions to advertisers that maximize the discounted gain, $W_{at} - \beta_a$
- **Previous Day**: We solve the dual LP on impressions from the previous day to obtain $\{\beta_a\}_a$, then allocate impressions to advertisers that maximize the discounted gain, $w_{at} - \beta_a$ Synthetic Instances exponential distribution Testing Fig. 3 Two algorithm illustrations of consistency (left) and robustness (right) for varying α . We run the algorithms 5 times
 - We generate advertisers' valuations for impression types by sampling from an
 - We sample the same number of impressions from each type, then sort them by ascending order of display times from a **Gaussian distribution**
 - We equip advertisers with fixed budgets
 - We use two important measures for the performance of the
 - The **robustness** ALG/OPT indicates how well the algorithm performs against the optimum solution
 - The consistency ALG/PRD measures how close the algorithm gets to the prediction's objective value
 - We test a variety of implementations on a variety of synthetic instances
 - We test three algorithms, five predictors, and two thresholds
 - We test on varying advertisers, budgets, impressions, etc.
- A synthetic instance of 10 advertisers, budgets $B_a \in [5, 20]$, and 100 impressions of 10 types
- Algorithm 1 bypasses the strong lower bound on the worst-case competitive ratio
- Algorithm 1 outperforms the random-mixture algorithm
- The **exponential averaging** thresholds (top) outperform the **minimum** thresholds (bottom)

DISCUSSION/CONCLUSIONS

• We implement a learning-augmented algorithm for Display Ads and GAP with free disposal that improves the performance beyond the worst-case

Future Work

- Improve the consistency of the performance
 - Some predictors do not always perform better than the worst-case
- Test different LP solvers
 - 20 advertisers and 400 impressions of 20 types takes CVXOPT ~12 seconds
- Test on real-world data

REFERENCES

[1] Fabian Spaeh and Aline Ene. (2023). Online ad allocation with predictions. URL https://doi.org/10.48550/arXiv.2302.01827. [2] Jon Feldman, Nitish Korula, Vahab S. Mirrokni, S. Muthukrishnan, and Martin Pál. (2009). Online ad assignment with free disposal. In Workshop of Internet Economics (WINE), pp. 374–385.

ACKNOWLEDGEMENTS

I would like to thank Professor Alina Ene for guiding me through this amazing research opportunity with incredible patience and kindness. A special thanks to the Boston University RISE program and my family for making this experience possible.