
Introduction to C++: Part 2

Tutorial Outline: Parts 2 and 3

 References and Pointers

 The formal concepts in OOP

 More about C++ classes

 Inheritance, Abstraction, and Encapsulation

 Virtual functions and Interfaces

References and Pointers

 Part 1 introduced the concept of passing by reference when calling functions.

 Selected by using the & character in function argument types: int add (int &a, int b)

 References hold a memory address of a value.
 int add (int &a, int b) a has the value of a memory address, b has an integer value.

 Used like regular variables and C++ automatically fills in the value of the reference when needed:

int c = a + b ;  “retrieve the value of a and add it to the value of b”

 From C there is another way to deal with the memory address of a variable: via pointer

types.

 Similar syntax in functions except that the & is replaced with a *:

int add (int *a, int b)

 To get a value a pointer requires manual intervention by the programmer:

int c = *a + b ;  “retrieve the value of a and add it to the value of b”

Reference Pointer

Declaration int &ref ; int *ptr ;

Set memory address to something in memory int a = 0 ;

int &ref = a ;

int a = 0 ;

int *ptr = &a ;

Fetch value of thing in memory cout << ref ; cout << *ptr ;

Can refer/point to nothing (null value)? No Yes

Can change address that it refers to/points at? No.

int a = 0 ;

int b = 1 ;

int &ref = a ;

ref = b ;

// value of a is now 1!

Yes

int a = 0 ;

int b = 1 ;

int *ptr = &a ;

ptr = &b ;

// ptr now points at b

Object member/method syntax MyClass obj ;

obj &ref = obj ;

ref.member ;

ref.method();

MyClass obj ;

obj *ptr = obj ;

ptr->member ;

ptr->method();

// OR

(*ptr).member ;

(*ptr).method() ;

int a = 0 ;

int &ref = a ;

int *ptr = &a ;

int a: 4 bytes in memory at

address 0xAABBFF with a

value of 0.

Value stored in ref:

0xAABBFF

Value stored in ptr:

0xAABBFF

When to use a reference or a pointer

 Bother references and pointers can be used to refer to objects in memory

in methods, functions, loops, etc.

 Avoids copying due to default call-by-value C++ behavior
 Could lead to memory/performance problems.

 Or cause issues with open files, databases, etc.

 If you need to:
 Hold a null value (i.e. point at nothing), use a pointer.

 Re-assign the memory address stored, use a pointer.

 Otherwise, use a reference.
 References are much easier to use, no funky C-style pointer syntax.

 Same benefits as a pointer, with less chance for error.

 Also no need to check if a reference has a null value…since they can’t.

void add(const int *a, const int b, int *c)

{

if (a) { // check for null pointer

*c = *a + b ;

}

}

The formal concepts in OOP

 Object-oriented programming

(OOP):
 Defines classes to represent data and logic

in a program. Classes can contain members

(data) and methods (internal functions).

 Creates instances of classes, aka objects,

and builds the programs out of their

interactions.

 The core concepts in addition to

classes and objects are:
 Encapsulation

 Inheritance

 Polymorphism

 Abstraction

Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

Core Concepts

 Encapsulation

 As mentioned while building the C++

class in the last session.

 Bundles related data and functions

into a class

 Inheritance

 Builds a relationship between classes

to share class members and methods

 Abstraction

 The hiding of members, methods,

and implementation details inside of a

class.

 Polymorphism

 The application of the same code to

multiple data types

 There are 3 kinds, all of which are

supported in C++. However only 1 is

actually called polymorphism in C++

jargon (!)

C++ Classes

 Open the Part 2 Shapes project in C::B

 In the Rectangle class C::B generated

two methods automatically.

 Rectangle() is a constructor. This is a

method that is called when an object is

instantiated for this class.

 Multiple constructors per class are

allowed

 ~Rectangle() is a destructor. This is

called when an object is removed from

memory.

 Only one destructor per class is allowed!

 (ignore the virtual keyword for now)

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

Encapsulation

 Bundling the data and area calculation for a rectangle into a

single class is and example of the concept of encapsulation.

Construction and Destruction

 The constructor is called

when an object is created.

 This is used to initialize an

object:

 Load values into member

variables

 Open files

 Connect to hardware,

databases, networks, etc.

 The destructor is called when

an object goes out of scope.

 Example:

 Object c1 is created when

the program reaches the first

line of the function, and

destroyed when the program

leaves the function.

void function() {

ClassOne c1 ;

}

When an object is instantiated…

 The rT object is created in memory.

 When it is created its constructor is called to

do any necessary initialization.

 Here the constructor is empty so nothing is done.

 The constructor can take any number of

arguments like any other function but it

cannot return any values.
 Essentially the return value is the object itself!

 What if there are multiple constructors?
 The compiler chooses the correct one based on the

arguments given.

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

}

#include "rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Note the constructor has no

return type!

A second constructor

rectangle.h

class Rectangle

{

public:

Rectangle();

Rectangle(float width, float length) ;

/* etc */

};

rectangle.cpp

#include "rectangle.h"

/* OK to do this */

Rectangle::Rectangle(float width, float length)

{

m_width = width ;

m_length = length ;

}

 Two styles of constructor. Above is the C++11 member

initialization list style. At the top is the old way. C++11 is

preferred.

 With the old way the empty constructor is called automatically

even though it does nothing – it still adds a function call.

 Same rectangle.h for both styles.

#include "rectangle.h“

/* Better to do this */

Rectangle::Rectangle(float width, float length) :

m_width(width),m_length(length) { }

OR

Member Initialization Lists

 Syntax:

MyClass(int A, OtherClass &B, float C):

m_A(A),

m_B(B),

m_C(C) {

/* other code can go here */

}

Colon goes here

Members assigned

and separated with

commas. Note: order

doesn’t matter.

Additional code can be

added in the code

block.

And now use both constructors

 Both constructors are now used.

The new constructor initializes the

values when the object is created.

 Constructors are used to:

 Initialize members

 Open files

 Connect to databases

 Etc.

#include <iostream>

using namespace std;

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

Rectangle rT_2(2.0,2.0) ;

cout << rT_2.Area() << endl ;

return 0;

}

Default values

 C++11 added the ability to define default

values in headers in an intuitive way.

 Pre-C++11 default values would have been

coded into constructors.

 If members with default values get their value

set in constructor than the default value is

ignored.
 i.e. no “double setting” of the value.

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

// could do:

float m_length = 0.0 ;

float m_width = 0.0 ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

Using the C::B Debugger

 To show how this works we will use the C::B interactive debugger to step through the program line-by-line to follow the

constructor calls.

 Make sure you are running in Debug mode. This turns off compiler optimizations and has the compiler include information in the

compiled code for effective debugging.

Add a Breakpoint

 Breakpoints tell the debugger to halt at a

particular line so that the state of the

program can be inspected.

 In rectangle.cpp, double click to the left

of the lines in the constructors to set a

pair of breakpoints. A red dot will appear.

 Click the red arrow to start the code in

the debugger.

 The program has paused at the first

breakpoint in the default constructor.

 Use the Next Line button to go back to

the main() routine.

 Press the red arrow to continue

execution – stops at the next breakpoint.

Default constructors and destructors

 The two methods created by C::B

automatically are explicit versions of the

default C++ constructors and destructors.

 Every class has them – if you don’t

define them then empty ones that do

nothing will be created for you by the

compiler.

 If you really don’t want the default constructor

you can delete it with the delete keyword. Also

in the header file you can use the default

keyword if you like to be clear.

 You must define your own constructor

when you want to initialize an object with

arguments (as done here)

 A custom destructor is always needed

when internal members in the class need

special handling.

 Examples: manually allocated memory, open

files, hardware drivers, database or network

connections, custom data structures, etc.

Destructors

 Destructors are called when an object is

destroyed.

 There is only one destructor allowed per

class.

 Objects are destroyed when they go out

of scope.

 Destructors are never called explicitly by

the programmer. Calls to destructors are

inserted automatically by the compiler.

Rectangle::~Rectangle()

{

//dtor

}

Note the destructor has no return type and is named with

a ~. This class just has 2 floats as members which are

automatically removed from memory by the compiler.

House object

~House() destructor

Scope
 Scope is the region where a variable is valid.

 Constructors are called when an object is created.

 Destructors are only ever called implicitly.

int main() { // Start of a code block

// in main function scope

float x ; // No constructors for built-in types

ClassOne c1 ; // c1 constructor ClassOne() is called.

if (1){ // Start of an inner code block

// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne() is called.

} // c2 destructor ~ClassOne() is called.

ClassOne c3 ; // c3 constructor ClassOne() is called.

} // leaving program, call destructors for c3 and c1 ~ClassOne()

// variable x: no destructor for built-in type

Copy, Assignment, and Move Constructors

 The compiler will automatically create constructors to deal with copying, assignment, and

moving.

 Moving occurs, for example, when an object is created and added to a list in a loop.

 Moving is an optimization feature that’s part of C++11.

 Dealing with the details of these constructors is outside of the scope of this tutorial

 How do you know if you need to write one?

 When you move, assign, or copy an object in your code and the code won’t compile!

 OR you move, assign, or copy an object, it compiles, but unexpected things happen when running.

 You may require custom code when...

 dealing with open files inside an object

 The class manually allocated memory

 Hardware resources (a serial port) opened inside an object

 Etc.

Rectangle rT_1(1.0,2.0) ;

// Now use the copy constructor

Rectangle rT_2(rT_1) ;

// Do an assignment, with the

// default assignment operator

rT_2 = rT_1 ;

So Far…

 Define a C++ class
 Adding members and methods

 Use separate header and source files for a C++ class.

 Class constructors & destructors

 OOP concept: Encapsulation

The formal concepts in OOP
Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

 Next up: Inheritance

Inheritance
 Inheritance is the ability to form a

hierarchy of classes where they share

common members and methods.

 Helps with: code re-use, consistent

programming, program organization

 This is a powerful concept!

Molecule

Inorganic

Mineral

Organic

Protein

Inheritance
 The class being derived from is referred

to as the base, parent, or super class.

 The class being derived is the derived,

child, or sub class.

 For consistency, we’ll use superclass

and subclass in this tutorial. A base class

is the one at the top of the hierarchy.

Molecule

Inorganic

Mineral

Organic

Protein

Superclass

Subclass

Base Class

Inheritance in Action

 Streams in C++ are series of characters

– the C+ I/O system is based on this

concept.

 cout is an object of the class ostream. It

is a write-only series of characters that

prints to the terminal.

 There are two subclasses of ostream:

 ofstream – write characters to a file

 ostringstream – write characters to a string

 Writing to the terminal is straightforward:

cout << some_variable ;

 How might an object of class ofstream or

ostringstream be used if we want to write

characters to a file or to a string?

Inheritance in Action

 For ofstream and ofstringstream the << operator is inherited from ostream

and behaves the same way for each from the programmer’s point of view.

 The ofstream class adds a constructor to open a file and a close() method.

 ofstringstream adds a method to retrieve the underlying string, str()

 If you wanted a class to write to something else, like a USB port…
 Maybe look into inheriting from ostream!

 Or its underlying class, basic_ostream which handles types other than characters…

Inheritance in Action

#include <iostream> // cout

#include <fstream> // ofstream

#include <sstream> // ostringstream

using namespace std ;

void some_func(string msg) {

cout << msg ; // to the terminal

// The constructor opens a file for writing

ofstream my_file("filename.txt") ;

// Write to the file.

my_file << msg ;

// close the file.

my_file.close() ;

ostringstream oss ;

// Write to the stringstream

oss << msg ;

// Get the string from stringstream

cout << oss.str() ;

}

Single vs Multiple Inheritance

 C++ supports creating relationships where a subclass

inherits data members and methods from a single

superclass: single inheritance

 C++ also support inheriting from multiple classes

simultaneously: Multiple inheritance

 This tutorial will only cover single inheritance.

 Generally speaking…

 Multiple inheritance requires a large amount of design effort

 It’s an easy way to end up with overly complex, fragile code

 Java, C#, and Python (all came after C++) exclude multiple

inheritance on purpose to avoid problems with it.

 With multiple inheritance a hierarchy like

this is possible to create. This is

nicknamed the Deadly Diamond of

Death as it creates ambiguity in the code.

 We will briefly address creating interfaces

in C++ later on which gives most of the

desired functionality of multiple

inheritance without the headaches.

D

B C

A

“There are only two things wrong with C++: The initial concept

and the implementation.”

– Bertrand Meyer (inventor of the Eiffel OOP language)

Public, protected, private

 These keywords were added by

C::B to our Rectangle class.

 These are used to control access

to different parts of the class

during inheritance by other pieces

of code.

class Rectangle

{

public:

Rectangle();

Rectangle(float width, float length) ;

virtual ~Rectangle();

float m_width ;

float m_length ;

float Area() ;

protected:

private:

};

C++ Access Control and Inheritance

 A summary of the accessibility of members and methods:

Access public protected private

Same class Yes Yes Yes

Subclass Yes Yes No

Outside classes Yes No No

Sub myobj ;

Myobj.i = 10 ; // ok

Myobj.j = 3 ; // Compiler error

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// in methods, could access

// i and k from Parent only.

};

Inheritance

Outside code

Abstraction

 Having private (internal) data and methods separated from public ones is

the OOP concept of abstraction.

C++ Inheritance Syntax

 Inheritance syntax pattern:
class SubclassName : public SuperclassName

 Here the public keyword is used.
 Methods implemented in class Sub can access any public or

protected members and methods in Super but cannot access

anything that is private.

 Other inheritance types are protected and private.

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// ...

};

It is now time to inherit

 The C::B program will help with the

syntax when defining a class that

inherits from another class.

 With the Shapes project open, click on

File  New  Class

 Give it the name Square and check

the “Inherits another class” option.

 Enter Rectangle as the superclass and

the include as “rectangle.h” (note the

lowercase r)

 Click Create!

 2 files are automatically generated: square.h and square.cpp

 Class Square inherits from class Rectangle

square.h square.cpp

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Square : public Rectangle

{

public:

Square();

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "square.h"

Square::Square()

{

//ctor

}

Square::~Square()

{

//dtor

}

 Note that subclasses are free to add any number

of new methods or members, they are not limited

to those in the superclass.

A new constructor is needed.

 A square is, of course, just a rectangle with equal length and width.

 The area can be calculated the same way as a rectangle.

 Our Square class therefore needs just one value to initialize it and it can

re-use the Rectangle.Area() method for its area.

 Go ahead and try it:
 Add an argument to the default constructor in square.h

 Update the constructor in square.cpp to do…?

 Remember Square can access the public members and methods in its superclass

Solution 1

 Square can access the public members in its superclass.

 Its constructor can then just assign the length of the side to the

Rectangle m_width and m_length.

 This is unsatisfying – while there is nothing wrong with this it’s

not the OOP way to do things.

 Why re-code the perfectly good constructor in Rectangle?

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "square.h"

Square::Square(float length) :

m_width(width),

m_length(length)

{}

The delegating constructor

 C++11 added an additional alternate

constructor syntax.

 Using member initialization lists you can call

one constructor from another. Here call a

constructor within a class.

 Even better: with member initialization lists

C++ can call superclass constructors!

Rectangle::Rectangle(float width) :

Rectangle(width,7) {}

Solution 2

 Square can directly call its superclass constructor and let the

Rectangle constructor make the assignment to m_width and

m_float.

 This saves typing, time, and reduces the chance of adding

bugs to your code.
 The more complex your code, the more compelling this statement is.

 Code re-use is one of the prime reasons to use OOP.

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "square.h"

Square::Square(float length) :

Rectangle(length, length)

{}

Trying it out in main()

 What happens behind the scenes

when this is compiled….

#include <iostream>

using namespace std;

#include "square.h"

int main()

{

Square sQ(4) ;

// Uses the Rectangle Area() method!

cout << sQ.Area() << endl ;

return 0;

}

sQ.Area()

Square class
does not

implement Area()
so compiler looks

to superclass

Finds Area() in
Rectangle class.

Inserts call to
Rectangle.Area()

method in
compiled code.

More on Destructors
 When a subclass object is

removed from memory, its

destructor is called as it is for any

object.

 Its superclass destructor is than

also called .

 Each subclass should only clean

up its own problems and let

superclasses clean up theirs.

Square object is
removed from

memory

~Square() is called

~Rectangle() is
called

The formal concepts in OOP
Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

 Next up: Polymorphism

Using subclasses
 A function that takes a superclass

argument can also be called with

a subclass as the argument.

 The reverse is not true – a

function expecting a subclass

argument cannot accept its

superclass.

 Copy the code to the right and

add it to your main.cpp file.

void PrintArea(Rectangle &rT) {

cout << rT.Area() << endl ;

}

int main() {

Rectangle rT(1.0,2.0) ;

Square sQ(3.0) ;

PrintArea(rT) ;

PrintArea(sQ) ;

}

The PrintArea function

can accept the Square

object sQ because

Square is a subclass of

Rectangle.

Overriding Methods
 Sometimes a subclass needs to have the

same interface to a method as a

superclass with different functionality.

 This is achieved by overriding a method.

 Overriding a method is simple: just re-

implement the method with the same

name and arguments in the subclass.

In C::B open project:

CodeBlocks Projects  Part 2  Virtual Method Calls

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

Overriding Methods

 Seems simple, right?

 To quote from slide 10 in Part 1 of this

tutorial, C++: “Includes all the subtleties

of C and adds its own”

 Overriding methods is one of those

subtleties.

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

How about in a function call…

 Given the class definitions, what

is happening in this function call?

 Using a single function to operate

on different types is

polymorphism.

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Super sP ;

Func(sP) ; // Prints 1

Sub sB ;

Func(sB) ; // Hey!! Prints 1!!

“C++ is an insult to the human brain”

– Niklaus Wirth (designer of Pascal)

Type casting

 The Func function passes the argument as a reference (Super &sP).

 What’s happening here is dynamic type casting, the process of converting from

one type to another at runtime.

 Same mechanism as the dynamic_cast function

 The incoming object is treated as though it were a superclass object in

the function.

 When methods are overridden and called there are two points where

the proper version of the method can be identified: either at compile

time or at runtime.

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Virtual methods
 When a method is labeled as virtual and

overridden the compiler will generate

code that will check the type of an object

at runtime when the method is called.

 The type check will then result in the

expected version of the method being

called.

 When overriding a virtual method in a

subclass, it’s a good idea to label the

method as virtual in the subclass as well.

 …just in case this gets subclassed again!

class SuperVirtual

{

public:

virtual void PrintNum()

{

cout << 1 << endl ;

}

} ;

class SubVirtual : public SuperVirtual

{

public:

// Override

virtual void PrintNum()

{

cout << 2 << endl ;

}

} ;

void Func(SuperVirtual &sP)

{

sP.PrintNum() ;

}

SuperVirtual sP ;

Func(sP) ; // Prints 1

SubVirtual sB ;

Func(sB) ; // Prints 2!!

Early (static) vs. Late (dynamic) binding

 What is going on here?

 Leaving out the virtual keyword on a

method that is overridden results in the

compiler deciding at compile time which

version (subclass or superclass) of the

method to call.

 This is called early or static binding.

 At compile time, a function that takes a

superclass argument will only call the

non-virtual superclass method under

early binding.

 Making a method virtual adds code

behind the scenes (that you, the

programmer, never interact with directly)

 A table called a vtable for each class is created

that tracks all the overrides of the virtual

method.

 Lookups in the vtable are done to figure out

what override of the virtual method should be

run.

 This is called late or dynamic binding.

 There is a small performance penalty for

late binding due to the vtable lookup.

 This only applies when an object is

referred to by a reference or pointer.

Behind the scenes – vptr and vtable

 C++ classes have a hidden pointer (vptr)

generated that points to a table of virtual

methods associated with a class (vtable).

 When a virtual class method (base class

or its subclasses) is called by reference

when the programming is running the

following happens:

 The object’s class vptr is followed to its class

vtable

 The virtual method is looked up in the vtable

and is then called.

 One vptr and one vtable per class so minimal

memory overhead

 If a method override is non-virtual it won’t be in

the vtable and it is selected a compile time.

Func(SuperVirtual &sP)

sP is a reference to a…

SuperVirtual SubVirtual

SuperVirtual’s

vptr

SubVirtual’s

vptr

Vtable

& SuperVirtual::PrintNum()

Vtable

& SubVirtual::PrintNum()

When to make methods virtual

 If a method will be (or might be)

overridden in a subclass, make it virtual

 There is a minor performance penalty.

Will that even matter to you?
 i.e. Have you profiled and tested your code to

show that virtual method calls are a performance

issue?

 When is this true?
 Almost always! Who knows how your code will

be used in the future?

 Constructors are never virtual in C++.

 Destructors in a base class should

always be virtual.

 Also – if any method in a class is virtual,

make the destructor virtual

 These are important when dealing with

objects via reference and it avoids some

subtleties when manually allocating

memory.

Why all this complexity?

 Late binding allows for code libraries to be updated for new functionality. As methods are identified at runtime

the executable does not need to be updated.

 This is done all the time! Your C++ code may be, for example, a plugin to an existing simulation code.

 Greater flexibility when dealing with multiple subclasses of a superclass.

 Most of the time this is the behavior you are looking for when building class hierarchies.

void FuncLate(SuperVirtual sP)

{

sP.PrintNum() ;

}

void FuncEarly(SuperVirtual &sP)

{

sP.PrintNum() ;

}

 Called by reference – late binding

to PrintNum()
 Called by value – early binding to

PrintNum even though it’s virtual!

 Remember the Deadly Diamond of

Death? Let’s explain.

 Look at the class hierarchy on the right.

 Square and Circle inherit from Shape

 Squircle inherits from both Square and Circle

 Syntax:

class Squircle : public Square, public Circle

 The Shape class implements an empty

Area() method. The Square and Circle

classes override it. Squircle does not.

 Under late binding, which version of Area

is accessed from Squircle?

Square.Area() or Circle.Area()?

Shape

virtual float Area() {}

Square

virtual float

Area() {…}

Circle

virtual float

Area() {…}

Squircle

Interfaces

 Another pitfall of multiple inheritance: the

fragile base class problem.

 If many classes inherit from a single base

(super) class then changes to methods in the

base class can have unexpected

consequences in the program.

 This can happen with single inheritance but it’s

much easier to run into with multiple

inheritance.

 Interfaces are a way to have your

classes share behavior without them

sharing actual code.

 Gives much of the benefit of multiple

inheritance without the complexity and

pitfalls

Shape

Square Circle

 Example: for debugging you’d like each class

to have a Log() method that would write some

info to a file.

 But each class has different types of

information to print!

 With multiple inheritance each subclass might

implement its own Log() method (or not). If an

override is left out in a subclass it may call the

Log() method on a superclass and print

unexpected information.

Log

Interfaces

 An interface class in C++ is called a pure virtual class.

 It contains virtual methods only with a special syntax.

Instead of {} the function is set to 0.
 Any subclass needs to implement the methods!

 Modified square.h shown.

 What happens when this is compiled?

 Once the LogInfo() is uncommented it will compile.

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Log {

virtual void LogInfo()=0 ;

};

class Square : public Rectangle, Log

{

public:

Square(float length);

virtual ~Square();

// virtual void LogInfo() {}

protected:

private:

};

#endif // SQUARE_H

(…error…)

include/square.h:10:7: note: because the following virtual

functions are pure within 'Square':

class Square : public Rectangle, Log

^

include/square.h:7:18: note: virtual void Log::LogInfo()

virtual void LogInfo()=0 ;

 C++ offers another fix for the diamond problem, Virtual inheritance. See: https://en.wikipedia.org/wiki/Virtual_inheritance

Putting it all together

 Now let’s revisit our Shapes

project.

 In the directory of C::B projects,

open the “Shapes with Circle”

project.

 This has a Shape base class with a

Rectangle and a Square

 Add a Circle class to the class

hierarchy in a sensible fashion.

Shape

Rectangle

Square

 Hint: Think first, code second.

Circle

???

New pure virtual Shape class

 Slight bit of trickery:

 An empty constructor is defined in shape.h

 No need to have an extra shape.cpp file if these

functions do nothing!

 Q: How much code can be in the header file?

 A: Most of it with some exceptions.

 .h files are not compiled into .o files so a header with

a lot of code gets re-compiled every time it’s

referenced in a source file.

#ifndef SHAPE_H

#define SHAPE_H

class Shape

{

public:

Shape() {}

virtual ~Shape() {}

virtual float Area()=0 ;

protected:

private:

};

#endif // SHAPE_H

Give it a try

 Add inheritance from Shape

to the Rectangle class

 Add a Circle class, inheriting

from wherever you like.

 Implement Area() for the

Circle

 If you just want to see a

solution, open the project

“Shapes with Circle solved”

A Potential Solution

 A Circle has one dimension

(radius), like a Square.

 Would only need to override the

Area() method

 But…

 Would be storing the radius in the

members m_width and m_length.

This is not a very obvious to

someone else who reads your code.

 Maybe:

 Change m_width and m_length

names to m_dim_1 and m_dim_2?

 Just makes everything more muddled!

Shape

Rectangle

Square

Circle

A Better Solution

 Inherit separately from the Shape

base class

 Seems logical, to most people a

circle is not a specialized form of

rectangle…

 Add a member m_radius to store

the radius.

 Implement the Area() method

 Makes more sense!

 Easy to extend to add an Oval

class, etc.

Shape

Rectangle

Square

Circle

New Circle class

 Also inherits from Shape

 Adds a constant value for p

 Constant values can be defined right in the

header file.

 If you accidentally try to change the value of PI

the compiler will throw an error.

#ifndef CIRCLE_H

#define CIRCLE_H

#include "shape.h"

class Circle : public Shape

{

public:

Circle();

Circle(float radius) ;

virtual ~Circle();

virtual float Area() ;

const float PI = 3.14;

float m_radius ;

protected:

private:

};

#endif // CIRCLE_H

 circle.cpp

 Questions?

#include "circle.h"

Circle::Circle()

{

//ctor

}

Circle::~Circle()

{

//dtor

}

// Use a member initialization list.

Circle::Circle(float radius) : m_radius{radius}

{}

float Circle::Area()

{

// Quiz: what happens if this line is

// uncommented and then compiled:

//PI=3.14159 ;

return m_radius * m_radius * PI ;

}

Quiz time!

 What happens behind

the scenes when the

function PrintArea is

called?

 How about if PrintArea’s

argument was instead:

void PrintArea(Shape shape)

void PrintArea(Shape &shape) {

cout << "Area: " << shape.Area() << endl ;

}

int main()

{

Square sQ(4) ;

Circle circ(3.5) ;

Rectangle rT(21,2) ;

// Print everything

PrintArea(sQ) ;

PrintArea(rT) ;

PrintArea(circ) ;

return 0;

}

Quick mention…

 Aside from overriding functions it

is also possible to override

operators in C++.

 As seen in the C++ string. The +

operator concatenates strings:

 It’s possible to override +,-,=,<,>,

brackets, parentheses, etc.

 Syntax:

 Recommendation:

 Generally speaking, avoid this. This

is an easy way to generate very

confusing code.

 The operator= is an exception.

string str = "ABC" ;

str = str + "DEF" ;

// str is now "ABCDEF"

MyClass operator*(const MyClass& mC) {...}

Summary

 C++ classes can be created in hierarchies via

inheritance, a core concept in OOP.

 Classes that inherit from others can make use

of the superclass’ public and protected

members and methods

 You write less code!

 Virtual methods should be used

whenever methods will be overridden in

subclasses.

 Avoid multiple inheritance, use interfaces

instead.

 Subclasses can override a superclass

method for their own purposes and can still

explicitly call the superclass method.

 Abstraction means hiding details when they

don’t need to be accessed by external code.
 Reduces the chances for bugs.

 While there is a lot of complexity here – in

terms of concepts, syntax, and application –

keep in mind that OOP is a highly successful

way of building programs!

