
Fall 2017

Learning Perl Through Examples
Part I

L1110@BUMC

9/21/2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Tutorial Resource

Before we start, please take a note - all the code scripts and
supporting documents are accessible through:

• http://rcs.bu.edu/examples/perl/tutorials/

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Sign In Sheet

We prepared sign-in sheet for each one to sign
We do this for internal management and quality control
So please SIGN IN if you haven’t done so

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Research Computing Services (RCS)
• RCS is a group within Information Services & Technology (IS&T) at Boston University

provides computing, storage, and visualization resources and services to support
research that has specialized or highly intensive computation, storage, bandwidth, or
graphics requirements.

• Three Primary Services:

1. Research Computation
2. Research Visualization
3. Research Consulting and Training

• More Info: http://www.bu.edu/tech/about/research/

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Research Computing Services (RCS) Tutorials

RCS offers three times a year tutorials

• Spring – in January/Feburary
• Summer – in May/June
• Fall – in September/October

This Perl tutorial is part I of a set (Part II come tomorrow)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

About Me

• Join RCS March 2016
• long time programmer, dated back in 1987
• Proficient in C/C++/Perl
• Domain knowledge: Network/Communication, Databases,

Bioinformatics, System Integration.
• Contact: yshen16@bu.edu, 617-638-5851
• Main Office: 801 Mass Ave. 4th Floor (Crosstown Building)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Tell Me A bit about You

• Name
• Experience in programming? If so, which specific lauguage?

Self rating?
• Experience in Perl?
• Account on SCC?
• Motivation (Expectation) to attend this tutorial
• Any other questions/fun facts you would like the class to

know?

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Evaluation

One last piece of information before we start:

• DON’T FORGET TO GO TO:

• http://rcs.bu.edu/survey/tutorial_evaluation.html

Leave your feedback for this tutorial (both good and bad as
long as it is honest are welcome. Thank you)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Topics for today

Background
Get to know Perl Environment
Using Perl
Code Examples
Packages and Modules
Perl help system
Perl Debugger
Q & A

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Background



Fall 2017

What Is Perl

Perl - the most famous backronym rather than an acronym
"Practical Extraction and Reporting Language".

• Developed by Larry Wall in 1987 at System Development Corporation (part of

UniSys later on)

• originally as a Unix Scripting Language

• Grown to be a full flown programming language, with many features

borrowed from other languages, such as C/sh/Lisp/AWK/sed/CGI

• Perl5 and Perl6 are mostly used now; this tutorial will focus on Perl5

• See official definition on http://www.perl.org

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Language Design Philosophy

• “There's more than one way to do it“ design philosophy and multi-
paradigm, dynamically typed language features leads to great degree
of flexibility in program design.

• CPAN and Perl Module (191,032available modules in CPAN in 35,637
distributions, written by 13,218 authors, mirrored on 250 servers over
60 countries)

• CPAN is honored to be called Perl’s ‘killer app’ (see
https://en.wikipedia.org/wiki/CPAN for more)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Perl Classification

Perl 5 and 6 are considered a family of high-level, general-

purpose, interpreted, dynamic programming languages.

• High-level – syntax/semantics close to natural language

• General purpose – not limited to specific tasks in a particular application

domain

• Interpreted – relative to compiled language (prepared/checked vs real-

time/interactive)

• Dynamic – not strict in predefined data type constraints, etc.

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Borrowed Features

Perl Borrows many features from other programming languages

• From C: procedural, variables, expression, assignment (=), brace-
delimited blocks ({}, ;), control flow (if, while, for, do, etc ), subroutine

• From shell: ‘$’ sign, system command
• From Lisp: lists data structure; implicit return value
• From AWK: hash
• From sed: regular expression

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Authentic Features

Perl’s most authentic features of its own:

• auto data-typing
• auto memory management
• It’s all handled by Perl interpreter

These are very powerful features and contribute a lot to the wide adoption of
Perl language

more details on Perl5 feature summary: https://www.perl.org/about.html

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Where Perl is used

• System administration
• Configuration management
• Web sites/web application
• Small scripts
• Bioinformatics
• Scientific calculations
• Test automation
• … (the riches lie in CPAN)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Swiss Army Chainsaw or Duct Tape of Internet?

Perl gained its nickname of ‘Swiss army chainsaw’ for its flexibility and

power; its ‘Duct Tape of Internet’ for its ability and often ‘ugly’, quick,

easy fixes for solutions to various problems. Commonly referred

applications:

• Powerful text processing without data length limitation

• Regular expression and string parsing capability

• CGI (duct tape, glue language for Internet)

• DBI

• BioPerl

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Major versions

• Perl 5 – almost rewrite of Perl interpreter, adding object-oriented

(OO) feature, complex data structure, module and CGI support.

Among them, module support plays critical role to CPAN’s

establishment, and nowadays a great resource and strength for Perl

community

• Perl 6 – fundamentally different from Perl 5, dedicated to Larry’s

birthday, goal is to fix all the warts in Perl 5; it’s said to be good at

all that Perl 5 is good at, and a lot more.

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Language Scope

• Perl is highly extensive language

• Open source framework – CPAN model

• CPAN and Perl Module
• 191,032 available modules
• 35, 637 distributions
• written by 13,218 authors
• mirrored on 250 servers

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Language Elements

• Data Types
– scalar, array, hash, reference

• Control Structures
– for, while, if, goto (yes, there is a Goto)

• Regular Expressions
• User Defined Extensions (Subroutines and functions)
• Objects/modules/packages

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Advantage Over C

• Perl runs on all platforms and is far more portable than C.

• Perl and a huge collection of Perl Modules are free software (either

GNU General Public License or Artistic License).

• Perl is very efficient in TEXT and STRING manipulation i.e. REGEXP.

• It is a language that combines the best features from many other

languages and is very easy to learn.

• Dynamic memory allocation is very easy in PERL, at any point of time

we can increase or decrease the size of the array (i.e. splice(), push())

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Disadvantage Over C

• You cannot easily create a binary image ("exe") from a Perl file. It's not a

serious problem on Unix, but it might be a problem on Windows.

• Moreover, if you write a script which uses modules from CPAN, and want to

run it on another computer, you need to install all the modules on that

other computer, which can be a drag.

• Perl is an interpretative language, so its comparatively slower to other

compiling language like C. So, it’s not feasible to use in Real time

environment like in flight simulation system.

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Some famous applications

• Web CGI (EBay, Craigslist, BBC, Amazon, …)
• 1000 Genome Project
• Financial analysis (ease of use, speed for integration, rapid

prototyping) - BarclaysCapital
• Summarizing system logs/deal with Windows registry or Unix Passwd

or groups file

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Get To Know Environment



Fall 2017

Connecting to SCC

• Option 1: You are able to keep everything you generate
Use your Shared Computing Cluster account if you have one.

• Option 2: all that you do in the tutorial may be wiped out after
tutorial ends unless you move the contents to somewhere belong to
you.

Tutorial accounts if you need one (will be offered in class).
• Username: TBD
• Password: TBD

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Download source code

Follow these steps to download the code:

ssh user@sccN.bu.edu (‘user’ is an account on SCC, ‘N’ can be 1-4)

mkdir perlThruEx

cd perlThruEx

wget http://scv.bu.edu/examples/perl/tutorials/src/perlThruExamples.zip

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Exercise 1 - Where is My Perl

Two commands to use:

‘which perl’
and

‘perl -v’

Do the experiment on next page to help understand the concept and
discover more

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Exercise 1a - Where is My Perl

Type ‘which perl’ in terminal

Now type ‘perl -v’

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Exercise 1b - Where is My Perl

Type ‘module load perl’, then type ‘which perl’ in terminal

Now type ‘perl -v’

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Exercise 1 - Observation

What’s the difference between Exercise 1a and 1b?

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

What do we learn from Exercise 1

• Perl is an environment – means
it can be changed by pointing to different installations.

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Exercise 2 – Perl Program Structure

Open code examples in gedit and browse the content:
codeEx_simplest.pl and codeEx_simplest.pl.nofirst

Try to run the following commands:

./codeEx_simplest.pl

./codeEx_simplest.pl.nofirst

What happened?

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Exercise 2 – Perl Program Structure (2)

Here is what would be:

Now try to run the following command:
perl ./codeEx_simplest.pl.nofirst

What happened?

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Exercise 2 – Perl Program Structure (3)

Here is what would be this time:

So why? Why is ‘perl’ in the command so critical to the 2nd code
example?

Topic: Perl program and OS

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Exercise 2 – Check Source Code

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Comments on Exercise 2

Comment#1: file name doesn’t matter (.pl is just a convention)
Comment#2: file permission doesn’t matter (the file can be in plain readable text
permission)

Reason: in the first command, ./codeEx_simplest.pl, the file functions as an
executable (in this case, the executable permission is a must), and inside the script, it
must contains the location for the perl interpreter (which is what the first line of the
code does)

But in the second form with perl leading the command: the file functions as mere an
input parameter to feed ‘perl’ command. The true executable from OS point is ‘perl’
program itself.

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

What do we learn from Exercise 2

• Importance of the first line of almost every Perl script (Perl
Interpreter is mandatory to be present)

• This is why the path has to be specified in each Perl script to let the
system know where to start (this is called ‘Entry Point’)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Using Perl



Fall 2017

Command line Option Explained

• Command format:
perl -[v|p|e|i] “perl statement/expression” input

• Options: (type “perl -h” for more options)
-e # tell perl to execute some statements in what is quoted following
-v # check current perl version
-i[extension] # edit input files in place (makes backup if extension supplied)
-n # assume "while (<>) { ... }" loop around program
-p # assume loop like -n but print line also

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Command line Examples

• perl -e 'print "Hello World\n"'
- same result as run ‘codeEx_simplest.pl’

• perl -n -e 'print "$. - $_"' codeEx_simplest.pl
- implicit loop, print code with line number

• perl -p -n -e '$_="$. - $_"' codeEx_simplest.pl
- implicit loop, implicit print, , using $_ new assignment

• perl -ne 'print "$. - $_" unless /^#/' codeEx_simplest.pl
- implicit loop, print code with line number

• perl -ne 'print "$. - $_" if /^#/' codeEx_simplest.pl
- print all lines that are starting with ‘#’

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Good Programming Practices

• Always starts with hash-bang line
#!/usr/local/bin/perl

• Using template/framework to standardize and simplify code tasks
(see MyFramework.pl for explanation)

• Learn to using Perl debugger tool rather than use ‘print’
• Start with minimum code required (isolate code)
• Reduce interference by defining good interfaces through subroutines
• Pay attention to format (especially with statement across multiple

lines)
• Many more … (refer to ‘Perl Best Practice’)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Good Programming Practices Code Example

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Variable Scope

• What is scope? The space that something is seen/valid

• Two types of scope: Global vs. Lexical

• Global variable – visible in the entire package, ‘our’ keyword

• lexical variable – only visible in the context, with ‘my’ keyword

• Override: Inside variable overrides(hides) the outside variable

• Package independence - same variable name can be used in different

packages, they are totally independent and won’t affect each other

• Use namespace to provide specificity – use “package::variable”

qualifier

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Variable Scope Example 1

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Variable Scope Example 2

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Variable Scope Example 3

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Variable Scope Good Practice

To avoid ambiguity –

• avoid using same name for different variables unless you are sure

they are meant to be same thing ;

• use meaningful names for each variable

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Special Symbols

• Also called ‘pre-defined variables’ in perldoc
• Can be divided into five categories:

• General Variables
• Regular Expression Variables
• Filehandle Variables
• Error Variables
• State Variables

• Perl programming depends highly on using these special symbols
(variables, more officially). So it is good to know about them.

• Use ‘perldoc perlvar’ to read the help documentation

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Special Symbols - General

$ARG/$_ – default input space
@ARG/@_ – parameter array for subroutine

$a – small number in sort(); $b – large number in sort()

%ENV – environment variables
%INC – the paths to be searched
…

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Special Symbols – Regular Expression

$1, $2, … - matching groups in the parentheses in pattern

Output:

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Special Symbols – Regular Expression (2)

• $&/${^MATCH} – last successful matching string
• $`/${^PREMATCH} – the string preceding the last matching string
• $’/${^POSTMATCH} – the string following the last matching string

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Special Symbols – File handlers

• $AGRV – name of current file
• @ARGV – command line arguments
• ARGV – special file handle for command line filenames
• $. – current line number
• $/ - input line delimiter
• $\ - output line delimiter
• $% - current page number

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Special Symbols – File handlers

• $@ Perl error string
• $! Error number from C, ‘errno’
• $^E Extended OS error info, such as ‘CDROM tray not closed’
• $? Exit status from last process

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Code Examples



Fall 2017

Walk Through Code Examples

Examples To walk through: (code examples are in ./code/session1/)

1. bio_nts_trans.pl - example in real world to show regular expression in use

2. bio_prot_trans.pl – example in real world to show hash structure in use

Let’s go to the terminal to go through these examples now.

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Packages and Modules



Fall 2017

Purpose of Packages/Modules

• To address the complicity of software functionality, when single script
is not sufficient and clear to provide the service.

• It’s a way to organize code

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

What is Package

• ‘package’ – the term used for functionality, means a division of global
namespace; can be spread across several files (modules);

• It’s a logical unit for code functionality;
• Declares the BLOCK or the rest of the compilation unit as being in the

given namespace (Perldoc definition)
• Package = Namespace (simplified)
• Way Perl uses to implement ‘class’ (object-oriented)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

What is Module

• ‘module’ – a library file consists of a set of related methods;
• It can be used as ‘class’ definition or class implementation , or both

(for example: Bio::SeqIO)
• modules are actual physical libraries stored in file system to

implement desired functioning system
• the common practice is to organize them by their logical namespaces

(package)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Package vs Module - relationship

• Modern design of perl modules – one module one package
• object-oriented

• hierarchically origanized, so outer namespace could cover the
inner namespace, to provide modularity

• Module file directory reflects namespace hierarchy
• well defined interfaces between modules (namespaces);
• Two Examples, Bio::DB and Bio::SeqIO

Bio::DB – no common interface; every sub namespace is self-referenced
Bio::SeqIO – has common abstract interface defined (implemented), while

inside every sub namespace related to certain SeqIO may refer to this common
interface

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

BioPerl on SCC

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

This is the first level file structure of BioPerl installed on SCC:

for full library structure, refer to : doc/bioperl_structure.txt



Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Perl help system



Fall 2017

Perl Language Reference

• This is the ultimate resource of authority – BLUEPRINT of a language;

• Access entrance:
• http://perldoc.perl.org/index-language.html

• May be found too difficult to be understood for beginners

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

‘perldoc’ utility
• Embedded Perl documentation system in ‘POD’ (Plain Old Documentation) format

• Mostly written for Perl library modules:

perldoc perldoc # how to use perldoc
perldoc perlintro # perl introduction for beginners
perldoc perltoc # Perl table of contents
perldoc perl # overview of Perl
perldoc perlfunc # Full list of Perl functions
perldoc -f print # help on built-in function called ‘print’
perldoc perlop # full list of perl operators

many more … (http://perldoc.perl.org/perl.html )

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

http://perldoc.perl.org/index-language.html

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

‘man’ command

• Linux ‘man’ command can be used to access perl module help, for
example:

man perl
man perldoc
man perltoc
man perlre
…

• ‘perldoc’ is recommended over ‘man’ – ‘man’ depends on if the man
pages are installed for certain Perl Modules or not

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Get Help – online resources

Websites:
https://learn.perl.org/tutorials/
https://perlmaven.com/
http://perlmonks.org/
https://www.tutorialspoint.com/perl/
http://stackoverflow.com/

Books: (for more refer to perlbook_list.txt)
https://www.perl.org/books/beginning-perl/
http://docstore.mik.ua/orelly/perl/cookbook/

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Perl debugger



Fall 2017

perl -d
• Use ‘perl –d scriptname’ to start debugger

• Perl debugger is a fully integrated part to Perl interpreter, that means code must
first pass the compiling process to be able to use debugger

• Frequently used debugger commands:

h: type the help information
n: execute next statement
s: single step execution
r: start/restart/continue run the code
b: set breakpoints
v: view source code in the context

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Data::Dumper

• Perl module commonly used to print out the variable structure and
value; but more convenient

• Usage:

use Data::Dumper qw(Dumper);

print Dumper \@an_array;
print Dumper \%a_hash;
print Dumper $a_reference;

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

Data::Dumper Code Example

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services



Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Q & A


