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RCS Team and Expertise

= Our Team = Consulting Focus:
= Scientific Programmers = Bioinformatics
= Systems Administrators = Data Analysis / Statistics
= Graphics/Visualization Specialists = Molecular modeling
= Account/Project Managers = Geographic Information Systems
= Special Initiatives (Grants) = Scientific / Engineering Simulation
= Maintains and administers the Shared = Visualization

Computing Cluster
= Located in Holyoke, MA
= ~17,000 CPUs running Linux
= CONTACT US: help@scv.bu.edu
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About You

= Working with Python already?

= Have you used any other programming languages®?

= Why do you want to learn Python?
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Running Python for the Tutorial

= |[f you have an SCC account, log into it and use Python
there.
= Run:
module load anaconda3
spyder &




.
Links on the Rm 107 Terminals

= On the Desktop open the folders:
Tutorial Files - RCS_Tutorials - Tutorial Files = Introduction to Python

= Copy the whole Introduction to Python folder to the desktop or to a flash

drive.
= When you log out the desktop copy will be deleted!
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Best match

Run Spyder rer

ot Desktop app

= Click on the Start Menu In
the bottom left corner and

type: spyder

= After a second or two it will
be found. Click to run it.

BOSTON ——
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Running Python: Installing it yourself

= There are many ways to install Python on your laptop/PC/etc.
= https://www.python.org/downloads/

» https://www.anaconda.com/download/

= https://www.enthought.com/product/enthought-python-distribution/

g

= https://python-xy.dithub.io/
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https://www.anaconda.com/download/
https://www.enthought.com/product/enthought-python-distribution/
https://python-xy.github.io/

BU’s most popular option: Anaconda

https://www.anaconda.com/download/

= Anaconda is a packaged set of programs including the Python language,
a huge number of libraries, and several tools.

= These include the Spyder development environment and Jupyter
notebooks.

= Anaconda can be used on the SCC, with some caveats.
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https://www.anaconda.com/download/

.
Python 2 vs. 3

= Python 2: released in 2000, Python 3 released in 2008

= Python 2 is in “maintenance mode” — no new features are expected

= Py3is not completely compatible with Py2

= For learning Python these differences are almost negligible

= \Which one to learn?

= |f your research group / advisor / boss / friends all use one version that’s probably the best one
for you to choose.

= |f you have a compelling reason to focus on one vs the other
= Otherwise just choose Py3. This is where the language development is happening!
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Spyder — a Python development environment

ch

Fie Edt Search Sowce FRun Debug Consoles Fropecs Tools View  Help
DS B%E0 pOEERC M CEEp B BEX & € 9 [clueiom = 4
Edtor - C\Useryiboregorionttied. oy

dt: & X Varehle expiorer
u PI'OS 3 wntriedizy QAT
L ¢

Name Yype Sue

= Faster development
= Easier debugging!
= Helps organize code I
= Increased efficiency °- -
)
= Cons L
= Learning curve
= Can add complexity to smaller
problems

BOSTON
UNIVERSITY



Tutorial Outline — Part 1

= What is Python?
= QOperators

= Variables

= Functions

= Classes

= |f/ Else

= Lists

BOSTON
UNIVERSITY



Tutorial Outline — Part 2

= Loops

= Tuples and dictionaries

= Modules

= numpy and matplotlib modules
= Script setup

= Debugging
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Tutorial Outline — Part 1

[- What is Python?]
= QOperators

= Variables

= |f/ Else

= Lists

= Loops

= Functions
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What is Python?

= Python...
= ...iIs a general purpose interpreted programming language.

= ...iIs a language that supports multiple approaches to software design,
principally structured and object-oriented programming.

= ...provides automatic memory management and garbage collection
= ...is extensible
= ...isdynamically typed.

= By the end of the tutorial you will understand all of these terms!

BOSTON
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.
Some History

= “Over six years ago, in December 1989, | was looking for a "hobby"
programming project that would keep me occupied during the week
around Christmas...l chose Python as a working title for the project, being
In a slightly irreverent mood (and a big fan of Monty Python's Flying
Circus).”

—Python creator Guido Van Rossum, from the foreward to Programming Python (1t
ed.)

= Goals:
= An easy and intuitive language just as powerful as major competitors
= QOpen source, so anyone can contribute to its development
= Code that is as understandable as plain English
= Suitability for everyday tasks, allowing for short development times

BOSTON
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COmp|IEd Languages (ex. C++ or Fortran)

L

il

header files
iastream.h
my_header.h

* BExpanded source code file

C++ preprocessor —— * not normally visible L C++ compiler
* g++-E to see output

—

main.cpp — l

* Assembler code file

assembler W B * not narmally visible
* g++-5to see output

- e

C++ library files
system library files

‘ Ohject code file
main.o

Executable

linker _ g++ -0 main main.cpp
main
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Interpreted LanguageS (ex. Python or R)

Python interpreter:
Source code files Python interpreter bytecode zollows b tepcode
prog.py y P conversion . !
math.py T Instructions

\_/

[ python prog.py 1

= Clearly, a lot less work is done to get a program to start running compared with compiled
languages!

= Bytecodes are an internal representation of the text program that can be efficiently run by
the Python interpreter.

= The interpreter itself is written in C and is a compiled program.
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Comparison

Interpreted
= Faster development

Easier debugging

= Debugging can stop anywhere, swap in
new code, more control over state of
program

(almost always) takes less code to
get things done

= Slower programs

= Sometimes as fast as compiled, rarely
faster

Less control over program behavior

BOSTON
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Compiled

Longer development
= Edit / compile / test cycle is longer!

Harder to debug
= Usually requires a special compilation

(almost always) takes more code to
get things done

Faster
= Compiled code runs directly on CPU

= Can communicate directly with
hardware

More control over program behavior



The Python Prompt

= The standard Python prompt looks like this:

[bgregor@scc2 bgl$ python
Python 3.6.2 (default, Aug 30 2017, 15:46:55)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-3)] on linux

Type "help"”, "copyright", "credits" or "license" for more information.

oS

= The IPython prompt in Spyder looks like this:

Python 3.6.3 |Anaconda, Inc.| (default, Oct 15 2017, @3:27:45) [MSC v.1900 64 bit (AMD64)]
Type "copyright", "credits"” or "license" for more information.

IPython £.1.8 -- An enhanced Interactive Python.

In [1]:

UNIVERSITY = |Python adds some handy behavior around the standard Python prompt.



N
The Spyder IDE

BOSTON
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& Spyder (Python 3.6) - [} x
File Edit Search Source Run Debug Consoles Projects Tools View Help

D = BREOQ » E‘l E‘l i G| ) ce = = B X ;& [ c:\Users\baregor ~ |
Editor - C:\Users\bgregor\untitled.py & X Variable explorer g x
[3 untitledo.py B 5 & 5, % -3
1 Mame Type Size Value

2

3 Created on Tue May 15 15:37:@9 2018

4

5 @author: bgregor

7 P

Variable explorer File explorer Help
B X

IPython console

[ Console 2/AE

. Python 3.6.3 |Anaconda, Inc.| (default, Oct 15 2817, 83:27:45) [MSC v.1988 64 bit (AMD64)] CeJ
ed Itor Type "copyright™, "credits" or "license"” for more information.
IPython 6.1.8 -- An enhanced Interactive Python.
In [1]:
v

IPython console Histary log

Permissions: RW End-of-lines: CRLF  Encoding: UTF-8 Line: 8 Column: 1 Memory: 72 %



Tutorial Outline — Part 1

= What is Python?
[- Operators ]

= Variables

= |f/ Else

= Lists

= Loops

= Functions
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Operators

= Python supports a wide variety of operators which act like functions, i.e.
they do something and return a value:

= Arithmetic: + - * / $ ol

= Logical: and  or not

= Comparison: > < >= <= | = ——
= Assignment: =

= Bitwise: & | ~ A >> <<

= |dentity: is is not

= Membership: in not in

BOSTON
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Python 3.6.3 |Anaconda, Inc.| (default, Oct 15 2817, 83:27:45)
Type "copyright”, "credits" or "license" for more information.

Try Python as a CaICUIator IPython 6.1.8 -- An enhanced Interactive Python.

In [1]: 1 + 3
Out[1]: 4

In [2]: 4%2
Out[2]: 8

In [3]:|

= (o to the Python prompt.
= Try out some arithmetic operators:

+ - * / % Kk == ()

= Can you identify what they all do?

BOSTON
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Try Python as a calculator

= (o to the Python prompt.

= Try out some arithmetic operators:
+ - * / & *x == ()

+ Addition

= Subtraction
* Multiplication

/ Division (Note: 3 /4 is 0.75!)
% Remainder (aka modulus)

o Exponentiation

BOSTON
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More Operators

= Try some comparisons and Boolean operators. True and False are the
keywords indicating those values:

In [15]: 4 » 5
Out[15]: False

In [16]: 6 » 3 and 3 > @
Out[1l6]: True

In [17]: not False
Out[17]: True

In [18]: True and (False or not False)
Out[18]: True

In [19]:

BOSTON
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Comments

T
N

= #is the Python comment character. On
any line everything after the # character
IS ignored by Python.

Edit Search Source Run Debug Consoles

= There i1s no multi-line comment D undo ez
character as in C or C++.  C Redo Ctri+shift+2
Cut Ctri+X
1€ Copy Ctri+C
. . . -y Paste Ctrl+Vv
= An editor like Spyder makes it very easy 2 eranl e
to comment blocks of code or vice- '® Comment/Uncomment  ctri+1
versa. Check the Edit menu p o Cocoecdoommen o
= |ndent Tab
=  Unindent Shift+Tab

BOSTON Toggle Uppercase Ctrl+Shift+U
UNIVERSITY ]
Toggle Lowercase Ctrl+U



Tutorial Outline — Part 1

= What is Python?
= QOperators

[- Variables ]
= |f/ Else
= Lists
= Loops
= Functions

BOSTON
UNIVERSITY



Variables
In [1]: a=1
= Variables are assigned values using the = operator In [2]: b=2
= |n the Python console, typing the name of a variable In [3]: a
prints its value Out[3]: 1
= Not true in a script!
In [4]: b
Out[4]: 2
= Variables can be reassigned at any time In [5]: a<b
= Variable type is not specified
= Types can be changed with a reassignment ;HE} .

BOSTON
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Variables cont'd

= Variables refer to a value stored in memory and are created when first

assigned

= Variable names:
= Must begin with a letter (a - z, A - B) or underscore _
= QOther characters can be letters, numbers or _
= Are case sensitive: capitalization counts!
= Can be any reasonable length

= Assignment can be done en masse:

_ _ _ Try these out!
= Multiple assignments can be done on one line: /

X, y, z =1, 2.39, 'cat'
BOSTON
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Variable Data Types

= Python determines data types for variables based on the context

= The type is identified when the program runs, called dynamic typing

= Compare with compiled languages like C++ or Fortran, where types are identified by
the programmer and by the compiler before the program is run.

= Run-time typing is very convenient and helps with rapid code

development...but requires the programmer to do more code testing for
reliability.

= The larger the program, the more significant the burden this is!!

BOSTON
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Variable Data Types

= Available basic types:
= Numbers: Integers and floating point (64-Dbit)

= Complex numbers: x = complex(3,1) Oor x = 3+17
= Strings, using double or single quotes: "cat" "dog'
= Boolean: True and False

= Lists, dictionaries, and tuples
= These hold collections of variables
Specialty types: files, network connections, objects

= Custom types can be defined. This will be covered in Part 2.

BOSTON
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Variable modifying operators

= Some additional arithmetic operators that modify variable values:

Equivalent to...
X+=y Add the value of y to x X=X+Yy
X-=Y Subtract the value of y X =X-Yy
from x

X*=y Multiply the value of x X =X*y
by 'y

XI=y Divide the value of x by X =Xy
y

= The += operator is by far the most commonly used of these!

BOSTON
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Check a type

= A built-in function, type(), returns the
type of the data assigned to a variable.

* |t's unusual to need to use this in a
program, but it's available if you need it!

= Try this out in Python — do some
assignments and reassignments and
see what type() returns.

BOSTON
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1.8

: b=3
: ¢="Hello!"

: type(a)
: float

: type(b)
- int

: type(c)
: str



Strings
= Strings are a basic data type in Python. ‘cat”
“dog"

= Indicated using pairs of single " or bt e
double " guotes.

= Multiline strings use a triple set of They sald “hello™
guotes (single or double) to start and ' This is
end them. a multiline

string "'°

= Strings have many built-in functions...

BOSTON
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Functions

= Functions are used to create code that can be used in a program or in
other programs.

= The use of functions to logically separate the program into discrete
computational steps.

= Programs that make heavy use of function definitions tend to be easier to
develop, debug, maintain, and understand.

BOSTON
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Python functions e name

Optional comma-separated

list of arguments (incoming
/ variables)
Keyword def =~~~ def func_name(argl,argl):

.. .5ome code... — — A code block

.. .50me more code. ..
return some wvalue

Optional return statement /

= The return value can be any Python type

= |f the return statement is omitted a special None value is still returned.
= The arguments are optional but the parentheses are required!
= Functions must be defined before they can be called.

BOSTON
UNIVERSITY




N
Function Return Values

= A function can return any Python value.

= Function call syntax:

A = some func() # return a value
Another func() # ignore return value or nothing returned
b,c = multiple vals(x,y,z) # return multiple values

= Open function_calls.py for some examples

BOSTON
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Function arguments

= Function arguments can be required or optional.
= Optional arguments are given a default value

def my func(a,b,c=10,d=-1):
..some code...

To call a function with optional arguments:

= Optional arguments can be used in the order they’re declared or out of
order if their name is used.

my func(x,y,z) # a=x, b=y, c=z, d=-1
my func(x,y) # a=x, b=y, c=10, d=-1
my func(x,y,d=w,c=z) # a=x, b=y, c=z, d=w

BOSTON
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Function arguments

= Remember the list assignment?

x = ['a', [], 'c', 3.14]
y=x # y points to the same list as x

= This applies in function calls too.

def my func(a list):
# modifies the list in the calling routine!
a list.append(1)

= Then call it:

my func (x) # X and a list inside the function are the same list!

UNIVERSITY




Garbage collection

= Variables defined in a function (or in any code block) no longer have any
“live” references to them once the function returns.

= These variables become garbage, and garbage collection operates to

remove them from the computer's memory, freeing up the memory to be
re-used.

= There is no need to explicitly destroy or release most variables.

= Some complex data types provide .close(), .clean(), etc. type functions. Use these where
available.

= Simple data types (int, string,lists) will be taken care of automatically.

BOSTON
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When does garbage collection occur?

def my_func(N):
= That’s hard to say. It happens when

Python thinks it should.

tmp = [1]*N

sum_tmp = sum(tmp)
return sum_tmp

= For the great majority of programs this is
not an issue.

= Programs using very large quantities of

memory or allocating large chunks of sums = []

: . for i in range(1068):
memory in repeated function calls can run sums . append (my_Func(100000))
Into trouble.

BOSTON
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Memory usage In functions

= |f possible, pre-allocate a list or other large data my_lst = 1000*[0]
I f 1 ] 16888 ) :
structures and re-use it. or 1 in range(1600)

my 1lst[i] = some_func()
= |.e. allocate outside the function call and send it as a function
argument. Remember function arguments are just references

so they don’t copy large data structures. my_lst =[]

for 1 in range(1008):
my lst.append(some_func())

= There are numerous tools to profile a program, which
means exam the CPU and memory usage of different
parts of the program.

= Need to control memory cleanup? Python provides
a library for this.

BOSTON
UNIVERSITY



https://docs.python.org/3/library/gc.html

Tutorial Outline — Part 1

= What is Python?
= QOperators

= Variables

= Functions

= Classes

= |f/ Else

= Lists
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Classes

= |In OOP a class is a data structure that combines data with functions that
operate on that data.

= An object is a variable whose type is a class
= Also called an instance of a class

= Classes provide a lot of power to help organize a program and can
Improve your ability to re-use your own code.

BOSTON
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class GasMolecule

Object-oriented programming |. ..

molecular weight, structure, common

names, etc.
. . . Methods:
- Python IS a fUIIy ObJeCt Ol’lented * [R(wavenumStart, wavenumEnd) :

return IR emission spectrum in range

programming (OOP) language.

= Object-oriented programming (OOP) Objects (instances of a class)
seeks to define a program in terms of astolecule cha
the things in the problem (files, GasMolecule co2 . ceudocode
molecules, buildings, cars, people, spectrum = ch4.IR(1000,3500)
etc.), what they need, and what they yane = coz-comnon_nane
can do. - J

BOSTON
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Object-oriented programming Class Car

Dy ey

= OOP defines classes to represent the o
parts of the program. public interface

= Classes can contain data and methods
(internal functions).

= Bundling these together is called
encapsulation.

= (Classes can inherit from one another

= A class (the subclass) can use all of the data
and methods from another class (the
superclass) and add its own.

= This is a highly effective way of modeling
real world problems inside of a computer
program.

BOSTON
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Encapsulation in Action

= In Python, calculate the area of some shapes after defining some functions.

# assume radius and width square are assigned

# already

al = AreaOfCircle (radius) # ok

a2 = AreaOfSquare (width square) # ok

a3 = AreaOfCircle (width square) # !'! OOPS

= |If we defined Circle and Rectangle classes with their own area() methods...it is not
possible to miscalculate.

cl = Circle(radius)

rl = Square (width square)
al = cl.area()

a2 = rl.areal()

BOSTON
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-
Strings in Python
= Python defines a string class — all strings in Python are objects.

= This means:
= Strings have their own internal management to handle storage of the characters

BOSTON
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String functions
= |n the Python console, create a string variable

called mystr
len(mystr)
= type: dir(mystr)
mystr.upper()
= Try out some functions: > mystr.title()

mystr.isdecimal()
= Need help? Try:

help(mystr.title) help(mystr.isdecimal)

BOSTON
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The len() function

= The len() function is not a string specific function.

= |t'll return the length of any Python variable that contains
some sort of countable thing.

= |n the case of strings it is the number of characters in the
string.




String operators

= Try using the + and += operators with strings in the
Python console.

= + concatenates strings. A="Hello BUI™
= += appends strings. print(a[4])

= Index strings using square brackets, starting at O.

BOSTON
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String operators

= Changing elements of a string by an index is not allowed:

In [79]: a='Hello BU!'

In [8@]: a[4] = "0O°
Traceback (most recent call last):

File "<ipython-input-88-7c5733c2cbey/>»", line 1, in <module>
al[4] = 'O

TypeError: 'str' object does not support item assignment

= Python strings are immutable, i.e. they can’t be changed.

BOSTON
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String Substitutions %S means sub in

value
variable name

= Python provides an easy way comes after a %
to stick variable values into
strings called substitutions

v
= Syntax for one variable: ‘string with a %s' % variable

= For more than one: 'w: Hs oy: ¥s  z: %s' % (xval,yval,zval)

|

Variables are listed in the

substitution order inside ()
UNIVERSITY
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=]

Variables with operators e mai=o » GBB ¢ M

Editor - C:\Users\bgregor\untitled0.py
(3 untitledD.py™® [ |

= Operators can be combined

1
freely with variables and 2"
. . 3 Created on Tue May 15 15:37:89 2818
variable assignment. ]
5 @author: bgregor
= Try some out again! R
9b = 2
Bc=a* 3 - 11
= This time type them into the D e
editor. Click the green h
triangle to run the file. Save 15
the file and it will run. -k
18 print(a,b,c,d)




Spyder setup

@ Execute in current consaole

() Execute in a dedicated console

u The flrst t|me you run a Scrlpt Spyder () Execute in an external system terminal
will prompt you with a setup dialog: enerelsetines

Clear all variables before execution
[ ] Directly enter debugging when errors appear

[ ] command line options:

Warking Directory settings

= Just click “Run” to run the script. This ® The drectory of the fie being exeauted
- () The current working directary
WI ” On Iy appear Once . () The following directory: =

External system terminal

[ ] Always show this dialog on a first file run

Fun Cancel
BOSTON . ~
UNIVERSITY
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= The Variable Explorer ® Spyder (ython 35

Wlndow IS dIS Ia In File Edit Search Source Run Debug Consoles Projects Tools  Wiew
. playing Oes EQ pHBREG HNE=ErEBX F° €5 &
Varlables and types Editor - C:\tempuntitled0.py & % | Variable explorer 5 x
I I untitledn. K2 u,
defined in the console. & @ . X =
1 Mame Type  Size Value &
3 Created on Tue May 15 15:37:09 2018 @ it 1 B
f - b int 1 2
5 @author: bgregor
_ c int 1 -8
ga=1 d float 1 -8.8
9p = 2
18c=a =3 -11 X int 1 1
11d = ¢ / 8.5 + b**3
12 Y int 1 1 "
1 1 13 a Variable explorer  File explorer  Help
= Only the print function h — .
1 15 ¢
printed values from the % 03 console /4 @
- 17 A
Scrlpt. . Zla F'r“l”t':a:b:c:d]l In [18]: runfile( 'C:/temp/untitled®.py’, wdir="C:/temp")
= Key difference between —p (|12 -8 -8.0
scripts and the console! In [19]:

BOSTON
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Tutorial Outline — Part 1

= What is Python?
= QOperators
= Variables
[- If / Else ]
= Lists
= Loops
= Functions
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If / Else

= |f, elif, and else statements are used to implement conditional program
behavior

= Syntax: if Boolean value:

..some code
elif Boolean value:
..some other code

else:
..more code

= elif and else are not required — used to chain together multiple conditional
statements or provide a default case.

BOSTON
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[J untitled0.py® (%

1 if True:
print( true!")

[ad

= Try out something like this in the Spyder

editor. Ja=1
5b = 2
G

= Do you get any error messages in the 7if a > b:

console? § c=4
9elif b » a:
18 c =b
11 else:

= Try using an elif or else statement by 1“ C teualr:
itself without a preceding if. What error = ST
message comes up? 14 print(c)

BOSTON
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.
Indentation of code...easier on the eyes!

int ® ; int x ;
if (- > =) | if (= > 2) {
= C: ¥ o= : X = r
} else { or } el=e {
X = ; X =0 ;
} '}
= Matlab: ;f={ > HE {K: ]
else or else
X o= Vo=
end end

BOSTON
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The Use of Indentation

= Python uses whitespace (spaces or tabs) to define code blocks.

= Code blocks are logical groupings of commands. They are always
preceded by a colon :

if 3 > 4:
P A code block
else:
Another code block — -y =

= This is due to an emphasis on code readabillity.
= Fewer characters to type and easier on the eyes!

= Spaces or tabs can be mixed in a file but not within a code block.

BOSTON
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If / Else code blocks

a =1
* Python knows a code block has 2~ %
ended when the indentation is N
removed. print(‘'a <= b")
if ¢ == 1:
—» print('c is 1)
= Code blocks can be nested — print(’out of the if statement’)

Inside others therefore if-elif-else
statements can be freely nested

within others. . Note the lack of “end if’,
“end”, curly braces, etc.

BOSTON
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I
File vs. Console Code Blocks

" Python knows a code block = Let’s try this out in Spyder
has ended when the

iIndentation Is removed. | |
= This sometimes causes

_ problems when pasting code
= EXCEPT when typing code into the console.

Into the Python console.
There an empty line indicates

the end of a code block. = This issue is something the

IPython console helps with.




Tutorial Outline — Part 1

= What is Python?
= QOperators
= Variables
= |f/ Else
[- Lists ]
= Loops
= Functions
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Lists

= A Python list is a general purpose 1-dimensional container for variables.
= l.e.Itis arow, column, or vector of things

= Lots of things in Python act like lists or use list-style notation.
= Variables in a list can be of any type at any location, including other lists.
= Lists can change in size: elements can be added or removed

= Lists are not meant for high performance numerical computing!
= We'll cover a library for that in Part 2
= Please don’t implement your own linear algebra with Python lists unless it's for your

el Lre)td OWn educational interests.
UNIVERSITY



Making a list and checking it twice...

list 1 = []
= Make a list with [ ] brackets.
list 1.append(1)
list 1.append( A string!")

= Append with the append() function list_1.append([])
= Create a list with some Iinitial elements list 2 = [4, 5, -23.8+4.14, 'cat’]
= Create a list with N repeated elements list 3 = 18 * [42]

Try these out yourself!
Edit the file in Spyder and run it.
Add some print() calls to see the lists.
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List functions

"append”,
‘clear’,
‘copy
‘count’,
"extend’,
"index”,
‘insert’,
‘pop’,
= Let’s try out a few... ‘remove’,
reverse’,
"sort’]

= Try dir(list_1)

= Like strings, lists have a number of
built-in functions

= Also try the len() function to see how
many things are in the list: len(list_1)
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Accessing List Elements

= Lists are accessed by index.
= All of this applies to accessing strings by index as well!

= |ndex #’s start at 0.
= List x=['a', 'b', 'c', 'd' ,'e']

= Firstelement. x[0]
= Nth element: x[2]
= Lastelement: x[-1]
= Next-to-last: x[-2
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List Indexing

= Elements in a list are accessed by an index number.

= |ndex #'s start at 0.

= List x=['a', 'b', 'c', 'd' ,'e']

= Firstelement. x[0] =»> 'a'
= Nth element: x[2] =2 'c¢'
= Lastelement: x[-112> 'e'
= Next-to-last: x[-2]1=> 'd’
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List Slicing

= Listt x=['a', 'b', 'c¢', 'd' ,'e']

= Slice syntax: x[start:end:step]
= The start value is inclusive, the end value is exclusive.
= Step is optional and defaults to 1.

= Leaving out the end value means “go to the end”
= Slicing always returns a new list copied from the existing list

= x[0:1] =2 ['a']

= x[0:2] =2 ['a','b']

= x[-3:] =2 ['c', 'd', 'Te'] # Third from the end to the end
" x[2:5:2] =2 ['c', 'e']
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List assignments and deletions

= Lists can have their elements overwritten or deleted (with the del) command.
= List: x=['a', 'b', 'c', 'd'" ,'e']
= x[0] = -3.14 -2 x is now [-3.14, 'b', 'c', 'd', 'e']

" del x[-1] =2 x 1is now [-3.14, 'b', 'c¢', 'd']

BOSTON
UNIVERSITY



* Go to the menu File->New File
] « Enter your list commands there
DIY Lists  Give the file a name when you save it
» Use print() to print out results

= |n the Spyder editor try the following things:

= Assign some lists to some variables.
= Try an empty list, repeated elements, initial set of elements

= Addtwo lists: a+ b What happens?
= Try list indexing, deletion, functions from dir(my _list)

= Try assigning the result of a list slice to a new variable
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More on Lists and Variables

X = [Ialj[]JI:IJ—j"i‘i]

= Open the sample file list_variables.py y = x
but don'’t run it yet!

print(‘x: ¥s addr of x: %s' % (x,id(x)))

= What do you think will be printed? prant(Ty: ks addr of y: Bt & (y,1d(y)))

x[8] = -100

print("x: ¥s® ¥ x)

= Now run it...were you right? orint('y: %s° % y)
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Variables and Memory Locations

: . X = [Ialj[]JI:IJ—j"i‘ﬂ']
= Variables refer to a value stored in
memory. y = x
= y = x does not mean “make a copy of
the list x and assign it to y” it means
“make a copy of the memory location in X — -

x and assign it to y”

= xis not the list it’s just a reference to it. y
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z=x[:]
: : z[8] = "frog’
COpylng Lists print( x: ¥s addr of x: %s" % (x,id(x)))
print{‘z: ¥s addr of z: %s" % (z,id(z)))

= How to copy (2 ways...there are more!):

=y = x[:] Or y=1list (x)

In list_variables.py uncomment the code at the bottom and run it.

= This behavior seems weird at first. It will make more sense when calling
functions.
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Tutorial Outline — Part 1

= What is Python?
= QOperators
= Variables
= |f/ Else
= Lists
[- Loops ]
= Functions
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While Loops
_ o while True:
= While loops have a condition and a print(“looping!™)
code block.
= the indentation indicates what's in the while loop. a=10
= The loop runs until the condition is false. while a > @:
_ _ print(a)
= The break keyword will stop a while a =1
|OOp running. my list=['a’,'b",'c",'d","e"]
1=0
_ _ while i < len(my list):
= |n the Spyder edit enter in some print( my_list[i] )
loops like these. Save and run them AN
one at a time. What happens with break

the 1St loop?
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For loops

= for loops are a little different. They
loop through a collection of things.

= The for loop syntax has a collection

and a code block.

= Each element in the collection is accessed in
order by a reference variable

= Each element can be used in the code block.

= The break keyword can be used in for
loops too.
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collection

In-loop reference
variable for each
collection element

for x in [1,2,3]:
print(x)

\

The code block



Processing lists element-by-element

= A for loop Is a convenient way to process every element in a list.

= There are several ways:

= Loop over the list elements

= Loop over a list of index values and access the list by index
= Do both at the same time

= Use a shorthand syntax called a list comprehension

= Open the file looping_lists.py
= Let's look at code samples for each of these.
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The range() function

= The range() function auto-generates sequences of numbers that can be
used for indexing into lists.

= Syntax: range(start, exclusive end, increment)
= range(0,4) - produces the sequence of numbers 0,1,2,3
= range(-3,15,3) - -3,0,3,6,9,12

= range(4,-3,2) =2 4,2,0,-2

= Try this: print(range(4))
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: : 1 2
Lists With Loops 34 odds > [1.3.5...]
56
. . ? E
= Open the file read_a file.py 9 10
11 12
o _ | 13 14
= This is an example of reading a file 15 16 evens > [2,4,6...]
Into a list. The file is shown to the 17 18
right, numbers.txt 19 20

: : :  Editread _a file.py and try to
= We want to read the lines in the file figure this out.

Into a list of strings (1 string for each « A solution is available in
line), then extract separate lists of read_a_file solved.py

the odd and even numbers. |
e Use the editor and run the code

frequently after small changes!
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