
Introduction to Python

Part 1

v0.2

Brian Gregor

Research Computing Services

Information Services & Technology

RCS Team and Expertise

 Our Team

 Scientific Programmers

 Systems Administrators

 Graphics/Visualization Specialists

 Account/Project Managers

 Special Initiatives (Grants)

 Maintains and administers the Shared

Computing Cluster

 Located in Holyoke, MA

 ~17,000 CPUs running Linux

 Consulting Focus:

 Bioinformatics

 Data Analysis / Statistics

 Molecular modeling

 Geographic Information Systems

 Scientific / Engineering Simulation

 Visualization

 CONTACT US: help@scv.bu.edu

mailto:help@scv.bu.edu

About You

 Working with Python already?

 Have you used any other programming languages?

 Why do you want to learn Python?

Running Python for the Tutorial

 If you have an SCC account, log into it and use Python

there.

 Run:

module load anaconda3

spyder &

Links on the Rm 107 Terminals

 On the Desktop open the folders:

Tutorial Files  RCS_Tutorials  Tutorial Files  Introduction to Python

 Copy the whole Introduction to Python folder to the desktop or to a flash

drive.
 When you log out the desktop copy will be deleted!



Run Spyder

 Click on the Start Menu in

the bottom left corner and

type: spyder

 After a second or two it will

be found. Click to run it.

Running Python: Installing it yourself

 There are many ways to install Python on your laptop/PC/etc.

 https://www.python.org/downloads/

 https://www.anaconda.com/download/

 https://www.enthought.com/product/enthought-python-distribution/

 https://python-xy.github.io/

https://www.python.org/downloads/
https://www.anaconda.com/download/
https://www.enthought.com/product/enthought-python-distribution/
https://python-xy.github.io/

BU’s most popular option: Anaconda

 https://www.anaconda.com/download/

 Anaconda is a packaged set of programs including the Python language,

a huge number of libraries, and several tools.

 These include the Spyder development environment and Jupyter

notebooks.

 Anaconda can be used on the SCC, with some caveats.

https://www.anaconda.com/download/

Python 2 vs. 3

 Python 2: released in 2000, Python 3 released in 2008
 Python 2 is in “maintenance mode” – no new features are expected

 Py3 is not completely compatible with Py2
 For learning Python these differences are almost negligible

 Which one to learn?
 If your research group / advisor / boss / friends all use one version that’s probably the best one

for you to choose.

 If you have a compelling reason to focus on one vs the other

 Otherwise just choose Py3. This is where the language development is happening!

Spyder – a Python development environment

 Pros:
 Faster development

 Easier debugging!

 Helps organize code

 Increased efficiency

 Cons
 Learning curve

 Can add complexity to smaller

problems

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 Functions

 Classes

 If / Else

 Lists

Tutorial Outline – Part 2

 Loops

 Tuples and dictionaries

 Modules

 numpy and matplotlib modules

 Script setup

 Debugging

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 If / Else

 Lists

 Loops

 Functions

What is Python?

 Python…

 …is a general purpose interpreted programming language.

 …is a language that supports multiple approaches to software design,

principally structured and object-oriented programming.

 …provides automatic memory management and garbage collection

 …is extensible

 …is dynamically typed.

 By the end of the tutorial you will understand all of these terms!

Some History

 “Over six years ago, in December 1989, I was looking for a "hobby"

programming project that would keep me occupied during the week

around Christmas…I chose Python as a working title for the project, being

in a slightly irreverent mood (and a big fan of Monty Python's Flying

Circus).”
–Python creator Guido Van Rossum, from the foreward to Programming Python (1st

ed.)

 Goals:
 An easy and intuitive language just as powerful as major competitors

 Open source, so anyone can contribute to its development

 Code that is as understandable as plain English

 Suitability for everyday tasks, allowing for short development times

Compiled Languages (ex. C++ or Fortran)

Interpreted Languages (ex. Python or R)

Source code files

prog.py

math.py

Python interpreter
bytecode
conversion

Python interpreter:
follows bytecode

instructions

python prog.py

 Clearly, a lot less work is done to get a program to start running compared with compiled

languages!

 Bytecodes are an internal representation of the text program that can be efficiently run by

the Python interpreter.

 The interpreter itself is written in C and is a compiled program.

Comparison

Interpreted

 Faster development

 Easier debugging

 Debugging can stop anywhere, swap in

new code, more control over state of

program

 (almost always) takes less code to

get things done

 Slower programs

 Sometimes as fast as compiled, rarely

faster

 Less control over program behavior

Compiled

 Longer development

 Edit / compile / test cycle is longer!

 Harder to debug

 Usually requires a special compilation

 (almost always) takes more code to

get things done

 Faster

 Compiled code runs directly on CPU

 Can communicate directly with

hardware

 More control over program behavior

The Python Prompt
 The standard Python prompt looks like this:

 The IPython prompt in Spyder looks like this:

 IPython adds some handy behavior around the standard Python prompt.

The Spyder IDE

editor

Python console

Variable and file explorer

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 If / Else

 Lists

 Loops

 Functions

Operators

 Python supports a wide variety of operators which act like functions, i.e.

they do something and return a value:
 Arithmetic: + - * / % **

 Logical: and or not

 Comparison: > < >= <= != ==

 Assignment: =

 Bitwise: & | ~ ^ >> <<

 Identity: is is not

 Membership: in not in

Try Python as a calculator

 Go to the Python prompt.

 Try out some arithmetic operators:

+ - * / % ** == ()

 Can you identify what they all do?

Try Python as a calculator

 Go to the Python prompt.

 Try out some arithmetic operators:

+ - * / % ** == ()

Operator Function

+ Addition

- Subtraction

* Multiplication

/ Division (Note: 3 / 4 is 0.75!)

% Remainder (aka modulus)

** Exponentiation

== Equals

More Operators

 Try some comparisons and Boolean operators. True and False are the

keywords indicating those values:

Comments

 # is the Python comment character. On

any line everything after the # character

is ignored by Python.

 There is no multi-line comment

character as in C or C++.

 An editor like Spyder makes it very easy

to comment blocks of code or vice-

versa. Check the Edit menu

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 If / Else

 Lists

 Loops

 Functions

Variables

 Variables are assigned values using the = operator

 In the Python console, typing the name of a variable

prints its value
 Not true in a script!

 Variables can be reassigned at any time

 Variable type is not specified

 Types can be changed with a reassignment

Variables cont’d

 Variables refer to a value stored in memory and are created when first

assigned

 Variable names:
 Must begin with a letter (a - z, A - B) or underscore _

 Other characters can be letters, numbers or _

 Are case sensitive: capitalization counts!

 Can be any reasonable length

 Assignment can be done en masse:

x = y = z = 1

 Multiple assignments can be done on one line:

x, y, z = 1, 2.39, 'cat'

Try these out!

Variable Data Types

 Python determines data types for variables based on the context

 The type is identified when the program runs, called dynamic typing

 Compare with compiled languages like C++ or Fortran, where types are identified by

the programmer and by the compiler before the program is run.

 Run-time typing is very convenient and helps with rapid code

development…but requires the programmer to do more code testing for

reliability.

 The larger the program, the more significant the burden this is!!

Variable Data Types

 Available basic types:

 Numbers: Integers and floating point (64-bit)

 Complex numbers: x = complex(3,1) or x = 3+1j

 Strings, using double or single quotes: "cat" 'dog'

 Boolean: True and False

 Lists, dictionaries, and tuples

 These hold collections of variables

 Specialty types: files, network connections, objects

 Custom types can be defined. This will be covered in Part 2.

Variable modifying operators

 Some additional arithmetic operators that modify variable values:

 The += operator is by far the most commonly used of these!

Operator Effect Equivalent to…

x += y Add the value of y to x x = x + y

x -= y Subtract the value of y

from x

x = x - y

x *= y Multiply the value of x

by y

x = x * y

x /= y Divide the value of x by

y

x = x / y

Check a type

 A built-in function, type(), returns the

type of the data assigned to a variable.

 It’s unusual to need to use this in a

program, but it’s available if you need it!

 Try this out in Python – do some

assignments and reassignments and

see what type() returns.

Strings

 Strings are a basic data type in Python.

 Indicated using pairs of single '' or

double "" quotes.

 Multiline strings use a triple set of

quotes (single or double) to start and

end them.

 Strings have many built-in functions…

Functions

 Functions are used to create code that can be used in a program or in

other programs.

 The use of functions to logically separate the program into discrete

computational steps.

 Programs that make heavy use of function definitions tend to be easier to

develop, debug, maintain, and understand.

Python functions

 The return value can be any Python type

 If the return statement is omitted a special None value is still returned.

 The arguments are optional but the parentheses are required!

 Functions must be defined before they can be called.

Keyword def

Function name

Optional comma-separated

list of arguments (incoming

variables)

A code block

Optional return statement

Function Return Values

 A function can return any Python value.

 Function call syntax:

 Open function_calls.py for some examples

A = some_func() # return a value

Another_func() # ignore return value or nothing returned

b,c = multiple_vals(x,y,z) # return multiple values

Function arguments

 Function arguments can be required or optional.

 Optional arguments are given a default value

 To call a function with optional arguments:

 Optional arguments can be used in the order they’re declared or out of

order if their name is used.

def my_func(a,b,c=10,d=-1):

…some code…

my_func(x,y,z) # a=x, b=y, c=z, d=-1

my_func(x,y) # a=x, b=y, c=10, d=-1

my_func(x,y,d=w,c=z) # a=x, b=y, c=z, d=w

Function arguments

 Remember the list assignment?

 This applies in function calls too.

 Then call it:

x = ['a', [], 'c', 3.14]

y=x # y points to the same list as x

def my_func(a_list):

modifies the list in the calling routine!

a_list.append(1)

my_func(x) # x and a_list inside the function are the same list!

Garbage collection

 Variables defined in a function (or in any code block) no longer have any

“live” references to them once the function returns.

 These variables become garbage, and garbage collection operates to

remove them from the computer’s memory, freeing up the memory to be

re-used.

 There is no need to explicitly destroy or release most variables.
 Some complex data types provide .close(), .clean(), etc. type functions. Use these where

available.

 Simple data types (int, string,lists) will be taken care of automatically.

When does garbage collection occur?

 That’s hard to say. It happens when

Python thinks it should.

 For the great majority of programs this is

not an issue.

 Programs using very large quantities of

memory or allocating large chunks of

memory in repeated function calls can run

into trouble.

Memory usage in functions

 If possible, pre-allocate a list or other large data

structures and re-use it.

 i.e. allocate outside the function call and send it as a function

argument. Remember function arguments are just references

so they don’t copy large data structures.

 There are numerous tools to profile a program, which

means exam the CPU and memory usage of different

parts of the program.

 Need to control memory cleanup? Python provides

a library for this.

https://docs.python.org/3/library/gc.html

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 Functions

 Classes

 If / Else

 Lists

Classes

 In OOP a class is a data structure that combines data with functions that

operate on that data.

 An object is a variable whose type is a class
 Also called an instance of a class

 Classes provide a lot of power to help organize a program and can

improve your ability to re-use your own code.

Object-oriented programming

 Python is a fully object oriented

programming (OOP) language.

 Object-oriented programming (OOP)

seeks to define a program in terms of

the things in the problem (files,

molecules, buildings, cars, people,

etc.), what they need, and what they

can do.

• Data:

• molecular weight, structure, common

names, etc.

• Methods:

• IR(wavenumStart, wavenumEnd) :

return IR emission spectrum in range

class GasMolecule

GasMolecule ch4

GasMolecule co2

spectrum = ch4.IR(1000,3500)

Name = co2.common_name

Objects (instances of a class)

“pseudo-code”

Object-oriented programming

 OOP defines classes to represent the

parts of the program.

 Classes can contain data and methods

(internal functions).

 Bundling these together is called

encapsulation.

 Classes can inherit from one another

 A class (the subclass) can use all of the data

and methods from another class (the

superclass) and add its own.

 This is a highly effective way of modeling

real world problems inside of a computer

program.

public interface

private data and methods

“Class Car”

Encapsulation in Action

 In Python, calculate the area of some shapes after defining some functions.

 If we defined Circle and Rectangle classes with their own area() methods…it is not

possible to miscalculate.

assume radius and width_square are assigned

already

a1 = AreaOfCircle(radius) # ok

a2 = AreaOfSquare(width_square) # ok

a3 = AreaOfCircle(width_square) # !! OOPS

c1 = Circle(radius)

r1 = Square(width_square)

a1 = c1.area()

a2 = r1.area()

Strings in Python

 Python defines a string class – all strings in Python are objects.

 This means:
 Strings have their own internal management to handle storage of the characters

String functions

 In the Python console, create a string variable

called mystr

 type: dir(mystr)

 Try out some functions:

 Need help? Try:

help(mystr.title)

len(mystr)

mystr.upper()

mystr.title()

mystr.isdecimal()

help(mystr.isdecimal)

The len() function

 The len() function is not a string specific function.

 It’ll return the length of any Python variable that contains

some sort of countable thing.

 In the case of strings it is the number of characters in the

string.

String operators

 Try using the + and += operators with strings in the

Python console.

 + concatenates strings.

 += appends strings.

 Index strings using square brackets, starting at 0.

String operators

 Changing elements of a string by an index is not allowed:

 Python strings are immutable, i.e. they can’t be changed.

String Substitutions

 Python provides an easy way

to stick variable values into

strings called substitutions

 Syntax for one variable:

 For more than one:

%s means sub in

value

variable name

comes after a %

Variables are listed in the

substitution order inside ()

Variables with operators

 Operators can be combined

freely with variables and

variable assignment.

 Try some out again!

 This time type them into the

editor. Click the green

triangle to run the file. Save

the file and it will run.

Spyder setup

 The first time you run a script Spyder

will prompt you with a setup dialog:

 Just click “Run” to run the script. This

will only appear once.

 The Variable Explorer

window is displaying

variables and types

defined in the console.

 Only the print function

printed values from the

script.

 Key difference between

scripts and the console!

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 If / Else

 Lists

 Loops

 Functions

If / Else

 If, elif, and else statements are used to implement conditional program

behavior

 Syntax:

 elif and else are not required – used to chain together multiple conditional

statements or provide a default case.

if Boolean_value:

…some code

elif Boolean_value:

…some other code

else:

…more code

 Try out something like this in the Spyder

editor.

 Do you get any error messages in the

console?

 Try using an elif or else statement by

itself without a preceding if. What error

message comes up?

Indentation of code…easier on the eyes!

 C:
or

 Matlab:

or

The Use of Indentation

 Python uses whitespace (spaces or tabs) to define code blocks.

 Code blocks are logical groupings of commands. They are always

preceded by a colon :

 This is due to an emphasis on code readability.

 Fewer characters to type and easier on the eyes!

 Spaces or tabs can be mixed in a file but not within a code block.

A code block

Another code block

If / Else code blocks

 Python knows a code block has

ended when the indentation is

removed.

 Code blocks can be nested

inside others therefore if-elif-else

statements can be freely nested

within others.
• Note the lack of “end if”,

“end”, curly braces, etc.

File vs. Console Code Blocks

 Python knows a code block

has ended when the

indentation is removed.

 EXCEPT when typing code

into the Python console.

There an empty line indicates

the end of a code block.

 Let’s try this out in Spyder

 This sometimes causes

problems when pasting code

into the console.

 This issue is something the

IPython console helps with.

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 If / Else

 Lists

 Loops

 Functions

Lists

 A Python list is a general purpose 1-dimensional container for variables.

 i.e. it is a row, column, or vector of things

 Lots of things in Python act like lists or use list-style notation.

 Variables in a list can be of any type at any location, including other lists.

 Lists can change in size: elements can be added or removed

 Lists are not meant for high performance numerical computing!

 We’ll cover a library for that in Part 2

 Please don’t implement your own linear algebra with Python lists unless it’s for your

own educational interests.

Making a list and checking it twice…

 Make a list with [] brackets.

 Append with the append() function

 Create a list with some initial elements

 Create a list with N repeated elements

Try these out yourself!

Edit the file in Spyder and run it.

Add some print() calls to see the lists.

List functions

 Try dir(list_1)

 Like strings, lists have a number of

built-in functions

 Let’s try out a few…

 Also try the len() function to see how

many things are in the list: len(list_1)

Accessing List Elements

 Lists are accessed by index.
 All of this applies to accessing strings by index as well!

 Index #’s start at 0.

 List: x=['a', 'b', 'c', 'd' ,'e']

 First element: x[0]

 Nth element: x[2]

 Last element: x[-1]

 Next-to-last: x[-2]

List Indexing

 Elements in a list are accessed by an index number.

 Index #’s start at 0.

 List: x=['a', 'b', 'c', 'd' ,'e']

 First element: x[0]  'a'

 Nth element: x[2]  'c'

 Last element: x[-1] 'e'

 Next-to-last: x[-2] 'd'

List Slicing

 List: x=['a', 'b', 'c', 'd' ,'e']

 Slice syntax: x[start:end:step]

 The start value is inclusive, the end value is exclusive.

 Step is optional and defaults to 1.

 Leaving out the end value means “go to the end”

 Slicing always returns a new list copied from the existing list

 x[0:1]  ['a']

 x[0:2]  ['a','b']

 x[-3:]  ['c', 'd', 'e'] # Third from the end to the end

 x[2:5:2]  ['c', 'e']

List assignments and deletions

 Lists can have their elements overwritten or deleted (with the del) command.

 List: x=['a', 'b', 'c', 'd' ,'e']

 x[0] = -3.14  x is now [-3.14, 'b', 'c', 'd', 'e']

 del x[-1]  x is now [-3.14, 'b', 'c', 'd']

DIY Lists

 In the Spyder editor try the following things:

 Assign some lists to some variables.
 Try an empty list, repeated elements, initial set of elements

 Add two lists: a + b What happens?

 Try list indexing, deletion, functions from dir(my_list)

 Try assigning the result of a list slice to a new variable

• Go to the menu FileNew File

• Enter your list commands there

• Give the file a name when you save it

• Use print() to print out results

More on Lists and Variables

 Open the sample file list_variables.py

but don’t run it yet!

 What do you think will be printed?

 Now run it…were you right?

Variables and Memory Locations

 Variables refer to a value stored in

memory.

 y = x does not mean “make a copy of

the list x and assign it to y” it means

“make a copy of the memory location in

x and assign it to y”

 x is not the list it’s just a reference to it.

x

y

Copying Lists

 How to copy (2 ways…there are more!):

 y = x[:] or y=list(x)

 In list_variables.py uncomment the code at the bottom and run it.

 This behavior seems weird at first. It will make more sense when calling

functions.

Tutorial Outline – Part 1

 What is Python?

 Operators

 Variables

 If / Else

 Lists

 Loops

 Functions

While Loops

 While loops have a condition and a

code block.
 the indentation indicates what’s in the while loop.

 The loop runs until the condition is false.

 The break keyword will stop a while

loop running.

 In the Spyder edit enter in some

loops like these. Save and run them

one at a time. What happens with

the 1st loop?

For loops

 for loops are a little different. They

loop through a collection of things.

 The for loop syntax has a collection

and a code block.
 Each element in the collection is accessed in

order by a reference variable

 Each element can be used in the code block.

 The break keyword can be used in for

loops too.

collection

In-loop reference

variable for each

collection element

The code block

Processing lists element-by-element

 A for loop is a convenient way to process every element in a list.

 There are several ways:
 Loop over the list elements

 Loop over a list of index values and access the list by index

 Do both at the same time

 Use a shorthand syntax called a list comprehension

 Open the file looping_lists.py

 Let’s look at code samples for each of these.

The range() function

 The range() function auto-generates sequences of numbers that can be

used for indexing into lists.

 Syntax: range(start, exclusive end, increment)

 range(0,4)  produces the sequence of numbers 0,1,2,3

 range(-3,15,3)  -3,0,3,6,9,12

 range(4,-3,2)  4,2,0,-2

 Try this: print(range(4))

Lists With Loops

 Open the file read_a_file.py

 This is an example of reading a file

into a list. The file is shown to the

right, numbers.txt

 We want to read the lines in the file

into a list of strings (1 string for each

line), then extract separate lists of

the odd and even numbers.

odds  [1,3,5…]

evens  [2,4,6…]

• Edit read_a_file.py and try to

figure this out.

• A solution is available in

read_a_file_solved.py

• Use the editor and run the code

frequently after small changes!

