Introduction to Python
Part 1

v0.2

Brian Gregor
Research Computing Services
Information Services & Technology

BOSTON

UNIVERSITY

RCS Team and Expertise

= Our Team = Consulting Focus:
= Scientific Programmers = Bioinformatics
= Systems Administrators = Data Analysis / Statistics
= Graphics/Visualization Specialists = Molecular modeling
= Account/Project Managers = Geographic Information Systems
= Special Initiatives (Grants) = Scientific / Engineering Simulation
= Maintains and administers the Shared = Visualization

Computing Cluster
= Located in Holyoke, MA
= ~17,000 CPUs running Linux
= CONTACT US: help@scv.bu.edu

BOSTON
UNIVERSITY

mailto:help@scv.bu.edu

About You

= Working with Python already?

= Have you used any other programming languages®?

= Why do you want to learn Python?

BOSTON
UNIVERSITY

Running Python for the Tutorial

= |[f you have an SCC account, log into it and use Python
there.
= Run:
module load anaconda3
spyder &

.
Links on the Rm 107 Terminals

= On the Desktop open the folders:
Tutorial Files - RCS_Tutorials - Tutorial Files = Introduction to Python

= Copy the whole Introduction to Python folder to the desktop or to a flash

drive.
= When you log out the desktop copy will be deleted!

BOSTON
UNIVERSITY

ol | OVIAZFLLOL LS

Best match

Run Spyder rer

ot Desktop app

= Click on the Start Menu In
the bottom left corner and

type: spyder

= After a second or two it will
be found. Click to run it.

BOSTON ——
i . Introduction to Python

Running Python: Installing it yourself

= There are many ways to install Python on your laptop/PC/etc.
= https://www.python.org/downloads/

» https://www.anaconda.com/download/

= https://www.enthought.com/product/enthought-python-distribution/

g

= https://python-xy.dithub.io/

BOSTON
UNIVERSITY

https://www.python.org/downloads/
https://www.anaconda.com/download/
https://www.enthought.com/product/enthought-python-distribution/
https://python-xy.github.io/

BU’s most popular option: Anaconda

https://www.anaconda.com/download/

= Anaconda is a packaged set of programs including the Python language,
a huge number of libraries, and several tools.

= These include the Spyder development environment and Jupyter
notebooks.

= Anaconda can be used on the SCC, with some caveats.

BOSTON
UNIVERSITY

https://www.anaconda.com/download/

.
Python 2 vs. 3

= Python 2: released in 2000, Python 3 released in 2008

= Python 2 is in “maintenance mode” — no new features are expected

= Py3is not completely compatible with Py2

= For learning Python these differences are almost negligible

= \Which one to learn?

= |f your research group / advisor / boss / friends all use one version that’s probably the best one
for you to choose.

= |f you have a compelling reason to focus on one vs the other
= Otherwise just choose Py3. This is where the language development is happening!

BOSTON
UNIVERSITY

Spyder — a Python development environment

ch

Fie Edt Search Sowce FRun Debug Consoles Fropecs Tools View Help
DS B%E0 pOEERC M CEEp B BEX & € 9 [clueiom = 4
Edtor - C\Useryiboregorionttied. oy

dt: & X Varehle expiorer
u PI'OS 3 wntriedizy QAT
L ¢

Name Yype Sue

= Faster development
= Easier debugging!
= Helps organize code I
= Increased efficiency °- -
)
= Cons L
= Learning curve
= Can add complexity to smaller
problems

BOSTON
UNIVERSITY

Tutorial Outline — Part 1

= What is Python?
= QOperators

= Variables

= Functions

= Classes

= |f/ Else

= Lists

BOSTON
UNIVERSITY

Tutorial Outline — Part 2

= Loops

= Tuples and dictionaries

= Modules

= numpy and matplotlib modules
= Script setup

= Debugging

BOSTON
UNIVERSITY

Tutorial Outline — Part 1

[- What is Python?]
= QOperators

= Variables

= |f/ Else

= Lists

= Loops

= Functions

BOSTON
UNIVERSITY

What is Python?

= Python...
= ...iIs a general purpose interpreted programming language.

= ...iIs a language that supports multiple approaches to software design,
principally structured and object-oriented programming.

= ...provides automatic memory management and garbage collection
= ...is extensible
= ...isdynamically typed.

= By the end of the tutorial you will understand all of these terms!

BOSTON
UNIVERSITY

.
Some History

= “Over six years ago, in December 1989, | was looking for a "hobby"
programming project that would keep me occupied during the week
around Christmas...l chose Python as a working title for the project, being
In a slightly irreverent mood (and a big fan of Monty Python's Flying
Circus).”

—Python creator Guido Van Rossum, from the foreward to Programming Python (1t
ed.)

= Goals:
= An easy and intuitive language just as powerful as major competitors
= QOpen source, so anyone can contribute to its development
= Code that is as understandable as plain English
= Suitability for everyday tasks, allowing for short development times

BOSTON
UNIVERSITY

COmp|IEd Languages (ex. C++ or Fortran)

L

il

header files
iastream.h
my_header.h

* BExpanded source code file

C++ preprocessor —— * not normally visible L C++ compiler
* g++-E to see output

—

main.cpp — l

* Assembler code file

assembler W B * not narmally visible
* g++-5to see output

- e

C++ library files
system library files

‘ Ohject code file
main.o

Executable

linker _ g++ -0 main main.cpp
main

BOSTON
UNIVERSITY

Interpreted LanguageS (ex. Python or R)

Python interpreter:
Source code files Python interpreter bytecode zollows b tepcode
prog.py y P conversion . !
math.py T Instructions

_/

[python prog.py 1

= Clearly, a lot less work is done to get a program to start running compared with compiled
languages!

= Bytecodes are an internal representation of the text program that can be efficiently run by
the Python interpreter.

= The interpreter itself is written in C and is a compiled program.

BOSTON
UNIVERSITY

Comparison

Interpreted
= Faster development

Easier debugging

= Debugging can stop anywhere, swap in
new code, more control over state of
program

(almost always) takes less code to
get things done

= Slower programs

= Sometimes as fast as compiled, rarely
faster

Less control over program behavior

BOSTON
UNIVERSITY

Compiled

Longer development
= Edit / compile / test cycle is longer!

Harder to debug
= Usually requires a special compilation

(almost always) takes more code to
get things done

Faster
= Compiled code runs directly on CPU

= Can communicate directly with
hardware

More control over program behavior

The Python Prompt

= The standard Python prompt looks like this:

[bgregor@scc2 bgl$ python
Python 3.6.2 (default, Aug 30 2017, 15:46:55)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-3)] on linux

Type "help"”, "copyright", "credits" or "license" for more information.

oS

= The IPython prompt in Spyder looks like this:

Python 3.6.3 |Anaconda, Inc.| (default, Oct 15 2017, @3:27:45) [MSC v.1900 64 bit (AMD64)]
Type "copyright", "credits"” or "license" for more information.

IPython £.1.8 -- An enhanced Interactive Python.

In [1]:

UNIVERSITY = |Python adds some handy behavior around the standard Python prompt.

N
The Spyder IDE

BOSTON

UNIVERSITY

& Spyder (Python 3.6) - [} x
File Edit Search Source Run Debug Consoles Projects Tools View Help

D = BREOQ » E‘l E‘l i G|) ce = = B X ;& [c:\Users\baregor ~ |
Editor - C:\Users\bgregor\untitled.py & X Variable explorer g x
[3 untitledo.py B 5 & 5, % -3
1 Mame Type Size Value

2

3 Created on Tue May 15 15:37:@9 2018

4

5 @author: bgregor

7 P

Variable explorer File explorer Help
B X

IPython console

[Console 2/AE

. Python 3.6.3 |Anaconda, Inc.| (default, Oct 15 2817, 83:27:45) [MSC v.1988 64 bit (AMD64)] CeJ
ed Itor Type "copyright™, "credits" or "license"” for more information.
IPython 6.1.8 -- An enhanced Interactive Python.
In [1]:
v

IPython console Histary log

Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 8 Column: 1 Memory: 72 %

Tutorial Outline — Part 1

= What is Python?
[- Operators]

= Variables

= |f/ Else

= Lists

= Loops

= Functions

BOSTON
UNIVERSITY

Operators

= Python supports a wide variety of operators which act like functions, i.e.
they do something and return a value:

= Arithmetic: + - * / $ ol

= Logical: and or not

= Comparison: > < >= <= | = ——
= Assignment: =

= Bitwise: & | ~ A >> <<

= |dentity: is is not

= Membership: in not in

BOSTON
UNIVERSITY

Python 3.6.3 |Anaconda, Inc.| (default, Oct 15 2817, 83:27:45)
Type "copyright”, "credits" or "license" for more information.

Try Python as a CaICUIator IPython 6.1.8 -- An enhanced Interactive Python.

In [1]: 1 + 3
Out[1]: 4

In [2]: 4%2
Out[2]: 8

In [3]:|

= (o to the Python prompt.
= Try out some arithmetic operators:

+ - * / % Kk == ()

= Can you identify what they all do?

BOSTON
UNIVERSITY

Try Python as a calculator

= (o to the Python prompt.

= Try out some arithmetic operators:
+ - * / & *x == ()

+ Addition

= Subtraction
* Multiplication

/ Division (Note: 3 /4 is 0.75!)
% Remainder (aka modulus)

o Exponentiation

BOSTON
Equals

More Operators

= Try some comparisons and Boolean operators. True and False are the
keywords indicating those values:

In [15]: 4 » 5
Out[15]: False

In [16]: 6 » 3 and 3 > @
Out[1l6]: True

In [17]: not False
Out[17]: True

In [18]: True and (False or not False)
Out[18]: True

In [19]:

BOSTON
UNIVERSITY

Comments

T
N

= #is the Python comment character. On
any line everything after the # character
IS ignored by Python.

Edit Search Source Run Debug Consoles

= There i1s no multi-line comment D undo ez
character as in C or C++. C Redo Ctri+shift+2
Cut Ctri+X
1€ Copy Ctri+C
. . . -y Paste Ctrl+Vv
= An editor like Spyder makes it very easy 2 eranl e
to comment blocks of code or vice- '® Comment/Uncomment ctri+1
versa. Check the Edit menu p o Cocoecdoommen o
= |ndent Tab
= Unindent Shift+Tab

BOSTON Toggle Uppercase Ctrl+Shift+U
UNIVERSITY]
Toggle Lowercase Ctrl+U

Tutorial Outline — Part 1

= What is Python?
= QOperators

[- Variables]
= |f/ Else
= Lists
= Loops
= Functions

BOSTON
UNIVERSITY

Variables
In [1]: a=1
= Variables are assigned values using the = operator In [2]: b=2
= |n the Python console, typing the name of a variable In [3]: a
prints its value Out[3]: 1
= Not true in a script!
In [4]: b
Out[4]: 2
= Variables can be reassigned at any time In [5]: a<b
= Variable type is not specified
= Types can be changed with a reassignment ;HE} .

BOSTON
UNIVERSITY

Variables cont'd

= Variables refer to a value stored in memory and are created when first

assigned

= Variable names:
= Must begin with a letter (a - z, A - B) or underscore _
= QOther characters can be letters, numbers or _
= Are case sensitive: capitalization counts!
= Can be any reasonable length

= Assignment can be done en masse:

_ _ _ Try these out!
= Multiple assignments can be done on one line: /

X, y, z =1, 2.39, 'cat'
BOSTON
UNIVERSITY

Variable Data Types

= Python determines data types for variables based on the context

= The type is identified when the program runs, called dynamic typing

= Compare with compiled languages like C++ or Fortran, where types are identified by
the programmer and by the compiler before the program is run.

= Run-time typing is very convenient and helps with rapid code

development...but requires the programmer to do more code testing for
reliability.

= The larger the program, the more significant the burden this is!!

BOSTON
UNIVERSITY

Variable Data Types

= Available basic types:
= Numbers: Integers and floating point (64-Dbit)

= Complex numbers: x = complex(3,1) Oor x = 3+17
= Strings, using double or single quotes: "cat" "dog'
= Boolean: True and False

= Lists, dictionaries, and tuples
= These hold collections of variables
Specialty types: files, network connections, objects

= Custom types can be defined. This will be covered in Part 2.

BOSTON
UNIVERSITY

Variable modifying operators

= Some additional arithmetic operators that modify variable values:

Equivalent to...
X+=y Add the value of y to x X=X+Yy
X-=Y Subtract the value of y X =X-Yy
from x

X*=y Multiply the value of x X =X*y
by 'y

XI=y Divide the value of x by X =Xy
y

= The += operator is by far the most commonly used of these!

BOSTON
UNIVERSITY

Check a type

= A built-in function, type(), returns the
type of the data assigned to a variable.

* |t's unusual to need to use this in a
program, but it's available if you need it!

= Try this out in Python — do some
assignments and reassignments and
see what type() returns.

BOSTON
UNIVERSITY

. d

1.8

: b=3
: ¢="Hello!"

: type(a)
: float

: type(b)
- int

: type(c)
: str

Strings
= Strings are a basic data type in Python. ‘cat”
“dog"

= Indicated using pairs of single " or bt e
double " guotes.

= Multiline strings use a triple set of They sald “hello™
guotes (single or double) to start and ' This is
end them. a multiline

string "'°

= Strings have many built-in functions...

BOSTON
UNIVERSITY

Functions

= Functions are used to create code that can be used in a program or in
other programs.

= The use of functions to logically separate the program into discrete
computational steps.

= Programs that make heavy use of function definitions tend to be easier to
develop, debug, maintain, and understand.

BOSTON
UNIVERSITY

Python functions e name

Optional comma-separated

list of arguments (incoming
/ variables)
Keyword def =~~~ def func_name(argl,argl):

.. .5ome code... — — A code block

.. .50me more code. ..
return some wvalue

Optional return statement /

= The return value can be any Python type

= |f the return statement is omitted a special None value is still returned.
= The arguments are optional but the parentheses are required!
= Functions must be defined before they can be called.

BOSTON
UNIVERSITY

N
Function Return Values

= A function can return any Python value.

= Function call syntax:

A = some func() # return a value
Another func() # ignore return value or nothing returned
b,c = multiple vals(x,y,z) # return multiple values

= Open function_calls.py for some examples

BOSTON
UNIVERSITY

Function arguments

= Function arguments can be required or optional.
= Optional arguments are given a default value

def my func(a,b,c=10,d=-1):
..some code...

To call a function with optional arguments:

= Optional arguments can be used in the order they’re declared or out of
order if their name is used.

my func(x,y,z) # a=x, b=y, c=z, d=-1
my func(x,y) # a=x, b=y, c=10, d=-1
my func(x,y,d=w,c=z) # a=x, b=y, c=z, d=w

BOSTON
UNIVERSITY

Function arguments

= Remember the list assignment?

x = ['a', [], 'c', 3.14]
y=x # y points to the same list as x

= This applies in function calls too.

def my func(a list):
modifies the list in the calling routine!
a list.append(1)

= Then call it:

my func (x) # X and a list inside the function are the same list!

UNIVERSITY

Garbage collection

= Variables defined in a function (or in any code block) no longer have any
“live” references to them once the function returns.

= These variables become garbage, and garbage collection operates to

remove them from the computer's memory, freeing up the memory to be
re-used.

= There is no need to explicitly destroy or release most variables.

= Some complex data types provide .close(), .clean(), etc. type functions. Use these where
available.

= Simple data types (int, string,lists) will be taken care of automatically.

BOSTON
UNIVERSITY

When does garbage collection occur?

def my_func(N):
= That’s hard to say. It happens when

Python thinks it should.

tmp = [1]*N

sum_tmp = sum(tmp)
return sum_tmp

= For the great majority of programs this is
not an issue.

= Programs using very large quantities of

memory or allocating large chunks of sums = []

: . for i in range(1068):
memory in repeated function calls can run sums . append (my_Func(100000))
Into trouble.

BOSTON
UNIVERSITY

Memory usage In functions

= |f possible, pre-allocate a list or other large data my_lst = 1000*[0]
I f 1] 16888) :
structures and re-use it. or 1 in range(1600)

my 1lst[i] = some_func()
= |.e. allocate outside the function call and send it as a function
argument. Remember function arguments are just references

so they don’t copy large data structures. my_lst =[]

for 1 in range(1008):
my lst.append(some_func())

= There are numerous tools to profile a program, which
means exam the CPU and memory usage of different
parts of the program.

= Need to control memory cleanup? Python provides
a library for this.

BOSTON
UNIVERSITY

https://docs.python.org/3/library/gc.html

Tutorial Outline — Part 1

= What is Python?
= QOperators

= Variables

= Functions

= Classes

= |f/ Else

= Lists

BOSTON
UNIVERSITY

Classes

= |In OOP a class is a data structure that combines data with functions that
operate on that data.

= An object is a variable whose type is a class
= Also called an instance of a class

= Classes provide a lot of power to help organize a program and can
Improve your ability to re-use your own code.

BOSTON
UNIVERSITY

class GasMolecule

Object-oriented programming |. ..

molecular weight, structure, common

names, etc.
. . . Methods:
- Python IS a fUIIy ObJeCt Ol’lented * [R(wavenumStart, wavenumEnd) :

return IR emission spectrum in range

programming (OOP) language.

= Object-oriented programming (OOP) Objects (instances of a class)
seeks to define a program in terms of astolecule cha
the things in the problem (files, GasMolecule co2 . ceudocode
molecules, buildings, cars, people, spectrum = ch4.IR(1000,3500)
etc.), what they need, and what they yane = coz-comnon_nane
can do. - J

BOSTON
UNIVERSITY

Object-oriented programming Class Car

Dy ey

= OOP defines classes to represent the o
parts of the program. public interface

= Classes can contain data and methods
(internal functions).

= Bundling these together is called
encapsulation.

= (Classes can inherit from one another

= A class (the subclass) can use all of the data
and methods from another class (the
superclass) and add its own.

= This is a highly effective way of modeling
real world problems inside of a computer
program.

BOSTON
UNIVERSITY

private data and methods

Encapsulation in Action

= In Python, calculate the area of some shapes after defining some functions.

assume radius and width square are assigned

already

al = AreaOfCircle (radius) # ok

a2 = AreaOfSquare (width square) # ok

a3 = AreaOfCircle (width square) # !'! OOPS

= |If we defined Circle and Rectangle classes with their own area() methods...it is not
possible to miscalculate.

cl = Circle(radius)

rl = Square (width square)
al = cl.area()

a2 = rl.areal()

BOSTON
UNIVERSITY

-
Strings in Python
= Python defines a string class — all strings in Python are objects.

= This means:
= Strings have their own internal management to handle storage of the characters

BOSTON
UNIVERSITY

String functions
= |n the Python console, create a string variable

called mystr
len(mystr)
= type: dir(mystr)
mystr.upper()
= Try out some functions: > mystr.title()

mystr.isdecimal()
= Need help? Try:

help(mystr.title) help(mystr.isdecimal)

BOSTON
UNIVERSITY

The len() function

= The len() function is not a string specific function.

= |t'll return the length of any Python variable that contains
some sort of countable thing.

= |n the case of strings it is the number of characters in the
string.

String operators

= Try using the + and += operators with strings in the
Python console.

= + concatenates strings. A="Hello BUI™
= += appends strings. print(a[4])

= Index strings using square brackets, starting at O.

BOSTON
UNIVERSITY

String operators

= Changing elements of a string by an index is not allowed:

In [79]: a='Hello BU!'

In [8@]: a[4] = "0O°
Traceback (most recent call last):

File "<ipython-input-88-7c5733c2cbey/>»", line 1, in <module>
al[4] = 'O

TypeError: 'str' object does not support item assignment

= Python strings are immutable, i.e. they can’t be changed.

BOSTON
UNIVERSITY

String Substitutions %S means sub in

value
variable name

= Python provides an easy way comes after a %
to stick variable values into
strings called substitutions

v
= Syntax for one variable: ‘string with a %s' % variable

= For more than one: 'w: Hs oy: ¥s z: %s' % (xval,yval,zval)

|

Variables are listed in the

substitution order inside ()
UNIVERSITY

)

=]

Variables with operators e mai=o » GBB ¢ M

Editor - C:\Users\bgregor\untitled0.py
(3 untitledD.py™® [|

= Operators can be combined

1
freely with variables and 2"
. . 3 Created on Tue May 15 15:37:89 2818
variable assignment.]
5 @author: bgregor
= Try some out again! R
9b = 2
Bc=a* 3 - 11
= This time type them into the D e
editor. Click the green h
triangle to run the file. Save 15
the file and it will run. -k
18 print(a,b,c,d)

Spyder setup

@ Execute in current consaole

() Execute in a dedicated console

u The flrst t|me you run a Scrlpt Spyder () Execute in an external system terminal
will prompt you with a setup dialog: enerelsetines

Clear all variables before execution
[] Directly enter debugging when errors appear

[] command line options:

Warking Directory settings

= Just click “Run” to run the script. This ® The drectory of the fie being exeauted
- () The current working directary
WI ” On Iy appear Once . () The following directory: =

External system terminal

[] Always show this dialog on a first file run

Fun Cancel
BOSTON . ~
UNIVERSITY

—

= The Variable Explorer ® Spyder (ython 35

Wlndow IS dIS Ia In File Edit Search Source Run Debug Consoles Projects Tools Wiew
. playing Oes EQ pHBREG HNE=ErEBX F° €5 &
Varlables and types Editor - C:\tempuntitled0.py & % | Variable explorer 5 x
I I untitledn. K2 u,
defined in the console. & @ . X =
1 Mame Type Size Value &
3 Created on Tue May 15 15:37:09 2018 @ it 1 B
f - b int 1 2
5 @author: bgregor
_ c int 1 -8
ga=1 d float 1 -8.8
9p = 2
18c=a =3 -11 X int 1 1
11d = ¢ / 8.5 + b**3
12 Y int 1 1 "
1 1 13 a Variable explorer File explorer Help
= Only the print function h — .
1 15 ¢
printed values from the % 03 console /4 @
- 17 A
Scrlpt. . Zla F'r“l”t':a:b:c:d]l In [18]: runfile('C:/temp/untitled®.py’, wdir="C:/temp")
= Key difference between —p (|12 -8 -8.0
scripts and the console! In [19]:

BOSTON
UNIVERSITY

Tutorial Outline — Part 1

= What is Python?
= QOperators
= Variables
[- If / Else]
= Lists
= Loops
= Functions

BOSTON
UNIVERSITY

If / Else

= |f, elif, and else statements are used to implement conditional program
behavior

= Syntax: if Boolean value:

..some code
elif Boolean value:
..some other code

else:
..more code

= elif and else are not required — used to chain together multiple conditional
statements or provide a default case.

BOSTON
UNIVERSITY

[J untitled0.py® (%

1 if True:
print(true!")

[ad

= Try out something like this in the Spyder

editor. Ja=1
5b = 2
G

= Do you get any error messages in the 7if a > b:

console? § c=4
9elif b » a:
18 c =b
11 else:

= Try using an elif or else statement by 1“ C teualr:
itself without a preceding if. What error = ST
message comes up? 14 print(c)

BOSTON
UNIVERSITY

.
Indentation of code...easier on the eyes!

int ® ; int x ;
if (- > =) | if (= > 2) {
= C: ¥ o= : X = r
} else { or } el=e {
X = ; X =0 ;
} '}
= Matlab: ;f={ > HE {K:]
else or else
X o= Vo=
end end

BOSTON
UNIVERSITY

The Use of Indentation

= Python uses whitespace (spaces or tabs) to define code blocks.

= Code blocks are logical groupings of commands. They are always
preceded by a colon :

if 3 > 4:
P A code block
else:
Another code block — -y =

= This is due to an emphasis on code readabillity.
= Fewer characters to type and easier on the eyes!

= Spaces or tabs can be mixed in a file but not within a code block.

BOSTON
UNIVERSITY

If / Else code blocks

a =1
* Python knows a code block has 2~ %
ended when the indentation is N
removed. print(‘'a <= b")
if ¢ == 1:
—» print('c is 1)
= Code blocks can be nested — print(’out of the if statement’)

Inside others therefore if-elif-else
statements can be freely nested

within others. . Note the lack of “end if’,
“end”, curly braces, etc.

BOSTON
UNIVERSITY

I
File vs. Console Code Blocks

" Python knows a code block = Let’s try this out in Spyder
has ended when the

iIndentation Is removed. | |
= This sometimes causes

_ problems when pasting code
= EXCEPT when typing code into the console.

Into the Python console.
There an empty line indicates

the end of a code block. = This issue is something the

IPython console helps with.

Tutorial Outline — Part 1

= What is Python?
= QOperators
= Variables
= |f/ Else
[- Lists]
= Loops
= Functions

BOSTON
UNIVERSITY

Lists

= A Python list is a general purpose 1-dimensional container for variables.
= l.e.Itis arow, column, or vector of things

= Lots of things in Python act like lists or use list-style notation.
= Variables in a list can be of any type at any location, including other lists.
= Lists can change in size: elements can be added or removed

= Lists are not meant for high performance numerical computing!
= We'll cover a library for that in Part 2
= Please don’t implement your own linear algebra with Python lists unless it's for your

el Lre)td OWn educational interests.
UNIVERSITY

Making a list and checking it twice...

list 1 = []
= Make a list with [] brackets.
list 1.append(1)
list 1.append(A string!")

= Append with the append() function list_1.append([])
= Create a list with some Iinitial elements list 2 = [4, 5, -23.8+4.14, 'cat’]
= Create a list with N repeated elements list 3 = 18 * [42]

Try these out yourself!
Edit the file in Spyder and run it.
Add some print() calls to see the lists.

BOSTON
UNIVERSITY

List functions

"append”,
‘clear’,
‘copy
‘count’,
"extend’,
"index”,
‘insert’,
‘pop’,
= Let’s try out a few... ‘remove’,
reverse’,
"sort’]

= Try dir(list_1)

= Like strings, lists have a number of
built-in functions

= Also try the len() function to see how
many things are in the list: len(list_1)

BOSTON
UNIVERSITY

Accessing List Elements

= Lists are accessed by index.
= All of this applies to accessing strings by index as well!

= |ndex #’s start at 0.
= List x=['a', 'b', 'c', 'd' ,'e']

= Firstelement. x[0]
= Nth element: x[2]
= Lastelement: x[-1]
= Next-to-last: x[-2

BOSTON
UNIVERSITY

List Indexing

= Elements in a list are accessed by an index number.

= |ndex #'s start at 0.

= List x=['a', 'b', 'c', 'd' ,'e']

= Firstelement. x[0] =»> 'a'
= Nth element: x[2] =2 'c¢'
= Lastelement: x[-112> 'e'
= Next-to-last: x[-2]1=> 'd’

BOSTON
UNIVERSITY

List Slicing

= Listt x=['a', 'b', 'c¢', 'd' ,'e']

= Slice syntax: x[start:end:step]
= The start value is inclusive, the end value is exclusive.
= Step is optional and defaults to 1.

= Leaving out the end value means “go to the end”
= Slicing always returns a new list copied from the existing list

= x[0:1] =2 ['a']

= x[0:2] =2 ['a','b']

= x[-3:] =2 ['c', 'd', 'Te'] # Third from the end to the end
" x[2:5:2] =2 ['c', 'e']

BOSTON
UNIVERSITY

List assignments and deletions

= Lists can have their elements overwritten or deleted (with the del) command.
= List: x=['a', 'b', 'c', 'd'" ,'e']
= x[0] = -3.14 -2 x is now [-3.14, 'b', 'c', 'd', 'e']

" del x[-1] =2 x 1is now [-3.14, 'b', 'c¢', 'd']

BOSTON
UNIVERSITY

* Go to the menu File->New File
] « Enter your list commands there
DIY Lists Give the file a name when you save it
» Use print() to print out results

= |n the Spyder editor try the following things:

= Assign some lists to some variables.
= Try an empty list, repeated elements, initial set of elements

= Addtwo lists: a+ b What happens?
= Try list indexing, deletion, functions from dir(my _list)

= Try assigning the result of a list slice to a new variable

BOSTON
UNIVERSITY

More on Lists and Variables

X = [Ialj[]JI:IJ—j"i‘i]

= Open the sample file list_variables.py y = x
but don'’t run it yet!

print(‘x: ¥s addr of x: %s' % (x,id(x)))

= What do you think will be printed? prant(Ty: ks addr of y: Bt & (y,1d(y)))

x[8] = -100

print("x: ¥s® ¥ x)

= Now run it...were you right? orint('y: %s° % y)

BOSTON
UNIVERSITY

Variables and Memory Locations

: . X = [Ialj[]JI:IJ—j"i‘ﬂ']
= Variables refer to a value stored in
memory. y = x
= y = x does not mean “make a copy of
the list x and assign it to y” it means
“make a copy of the memory location in X — -

x and assign it to y”

= xis not the list it’s just a reference to it. y

BOSTON
UNIVERSITY

z=x[:]
: : z[8] = "frog’
COpylng Lists print(x: ¥s addr of x: %s" % (x,id(x)))
print{‘z: ¥s addr of z: %s" % (z,id(z)))

= How to copy (2 ways...there are more!):

=y = x[:] Or y=1list (x)

In list_variables.py uncomment the code at the bottom and run it.

= This behavior seems weird at first. It will make more sense when calling
functions.

BOSTON
UNIVERSITY

Tutorial Outline — Part 1

= What is Python?
= QOperators
= Variables
= |f/ Else
= Lists
[- Loops]
= Functions

BOSTON
UNIVERSITY

While Loops
_ o while True:
= While loops have a condition and a print(“looping!™)
code block.
= the indentation indicates what's in the while loop. a=10
= The loop runs until the condition is false. while a > @:
_ _ print(a)
= The break keyword will stop a while a =1
|OOp running. my list=['a’,'b",'c",'d","e"]
1=0
_ _ while i < len(my list):
= |n the Spyder edit enter in some print(my_list[i])
loops like these. Save and run them AN
one at a time. What happens with break

the 1St loop?

BOSTON
UNIVERSITY

For loops

= for loops are a little different. They
loop through a collection of things.

= The for loop syntax has a collection

and a code block.

= Each element in the collection is accessed in
order by a reference variable

= Each element can be used in the code block.

= The break keyword can be used in for
loops too.

BOSTON
UNIVERSITY

collection

In-loop reference
variable for each
collection element

for x in [1,2,3]:
print(x)

\

The code block

Processing lists element-by-element

= A for loop Is a convenient way to process every element in a list.

= There are several ways:

= Loop over the list elements

= Loop over a list of index values and access the list by index
= Do both at the same time

= Use a shorthand syntax called a list comprehension

= Open the file looping_lists.py
= Let's look at code samples for each of these.

BOSTON
UNIVERSITY

The range() function

= The range() function auto-generates sequences of numbers that can be
used for indexing into lists.

= Syntax: range(start, exclusive end, increment)
= range(0,4) - produces the sequence of numbers 0,1,2,3
= range(-3,15,3) - -3,0,3,6,9,12

= range(4,-3,2) =2 4,2,0,-2

= Try this: print(range(4))

BOSTON
UNIVERSITY

: : 1 2
Lists With Loops 34 odds > [1.3.5...]
56
. . ? E
= Open the file read_a file.py 9 10
11 12
o _ | 13 14
= This is an example of reading a file 15 16 evens > [2,4,6...]
Into a list. The file is shown to the 17 18
right, numbers.txt 19 20

: : : Editread _a file.py and try to
= We want to read the lines in the file figure this out.

Into a list of strings (1 string for each « A solution is available in
line), then extract separate lists of read_a_file solved.py

the odd and even numbers. |
e Use the editor and run the code

frequently after small changes!
UNIVERSITY

