

Tutorial Outline: Part 3

[= Defining Classes }
= Class inheritance
= Public, private, and protected access
= Virtual functions

BOSTON
UNIVERSITY

A first C++ class

= QOpen project Basic_Rectangle.
= We’ll add our own custom class to this project.
= A C++ class consists of 2 files: a header file (.h) and a source file (.cpp)

= The header file contains the definitions for the types and names of members, methods, and
how the class relates to other classes (if it does).

= The source file contains the code that implements the functionality of the class

= Sometimes there is a header file for a class but no source file.

BOSTON
UNIVERSITY "_

FiIE E i [[T e [N [, Pl i e [T, LT S S TR
™ Project...
mil g Go Into ¥ File o
U Si n ECI i Se & Proje Open in New Window [FAle from Template .0
g p m Show in Local Termina » 9 Folder ' {
- Paste [h| Header File) r
» X Delete '€/ Source File
P == Fu Remove from Context 69 Source Folder
¥ == he Source 4 € C/C++ Project
v 5 O Move [E| Fortran Project
b4 Rename... F2 & Synchronized C/C++ Project
= i Import... [&] synchronized Fortran Project
> & 3 Export... = synchronized Project
> &5 Build Project ™ Example... al
Clean Project =4 other... ctri+N
- T [T TTEEA A [PRy Sy [——

= An IDE is very useful for setting up code that follows patterns and configuring the build
system to compile them.

= This saves time and effort for the programmer.

= Right-click on the Basic_Rectangle project and choose New =Class

% New C++ Class o [m] s
C++ Class
{
i Create a new C++ class. I\S.,)
Source folder: Basic_Rectangle/src Browse...

| |Namespace: Browse

[| lee It the name | Class name: |Rectang|e|

Base classes:

Rectangle and click , Add-
the Finish button. S
= Open the new files | ethod stubs
Rectangle.h and i Do vesmerr pabeyes deitio
Rectangle.cpp 8 ooy crempte|re s
1 Header: Rectangle.h Browse...
Source: Rectangle.cpp Browse...
I:I Unit Test: Browse

BOSTON
UNIVERSITY

RECtang|6h f Rectangle.h

Class name
Created on: Sep 9, 2019
Author: bgregor
[] lll

keyword '
#1ifndef RECTANGLE H_ Curly brace
#define REETANELE_:'/
class Rectangle {

Access — puhlic .

control Rectangle(];

virtual ~Rectangle();

Curly brace H;
and a —

semi-colon. #endif /* RECTANGLE H_ */

BOSTON
UNIVERSITY

Default declared methods

* Rectangle.h
= Rectangle();

Created on: S5ep 9, 2019
= A constructor. Called when an object of this class is

Author: bgregor

created. ¥
#ifndef RECTANGLE H_
= ~Rectangle(); gdefine RECTANGLE_H_
= A destructor. Called when an object of this class is
removed from memory, i.e. destroyed. class Rectangle {

public:
Rectangle();
virtual ~Rectangle();

= [gnore the virtual keyword for now.

hE

#endif /* RECTANGLE _H_ */

BOSTON
UNIVERSITY

Rectangle.cpp
Rectangle.c
g) F)r) Created on: Sep 2| 2019
Author: bgregor

Header file included \ f
#include "Rectangle.h"

Rectangle: :Rectangle() {

Class_name:: pattern indicates - Auto-generated constructor stub
the method declared in the header }
Is being implemented in code

here. Rectangle: :~Rectangle() {

I Auto-generated destructor stub

}

Methods are otherwise regular
functions with arguments () and
matched curly braces {}.

BOSTON
UNIVERSITY

Let’'s add some functionality

= A Rectangle class should store a class Rectangle {

) public:
length and a width. Rectangle() :

= To make it useful, let’s have it virtual ~Rectangle();
supply an Area() method to

compute its own area. float m_length ;

float m width ;

= Edit the header file to look like the float Areal) ;
code to the right. float ScaledArealconst fleoat scale);

BOSTON
UNIVERSITY

.
Encapsulation

= Bundling the data and area calculation for a rectangle into a
single class is an example of the concept of encapsulation.

BOSTON
UNIVERSITY

The code for the two methods Is needed

= Right-click in the Rectangle.h
window and choose
Source->Implement Methods

[Paste Ctri+v

Quick Fix Ctrl+1 _
Refactor k x| shift Right
Declarations 3 <= shift Left
References 3 Correct Indentation trl+
Search Text 3 Format Shift+Ctrl+F
Resource Configurations 3 Add Include shift+Ctrl+M
Show Concurrency Organize Includes shift+Ctri4+0
Selective Instrumentation b Override Methods...
i Run As b Generate Getters and Setters...
| 4% Debug As 3 Implement Method...
Grap‘ Profile As bl . 3
UNIVERSITY + Af . .

= Click Select All then click OK.

% Implement Method o x

% float Areal) ; Select all

'+ float ScaledArealconst float scale);

Deselect all

i Select Methods to implement:

Preview = Cancel

BOSTON
UNIVERSITY

float Rectangle::Areal) {

I:III |n the methOdS : return m_length * m width ;

= Step 1: add some comments. float Rectangle::ScaledArea(const float scale) {
// Calculate the area and multiply 1t

= Step 2: add some code. o’
// by the scale argument. Return 1t.

= Member variables can be accessed as though they were passed to the method.
= Methods can also call each other.
= Fill in the Area() method and then write your own ScaledArea(). Don’t forget to compile!

BOSTON
UNIVERSITY

N
Using the new class

= Open Basic_Rectangle.cpp = We'll do this together...

= Add an include statement for
the new Rectangle.h

= Create a Rectangle object
and call its methods.

BOSTON
UNIVERSITY

Special methods

= There are several methods that deal with creating and
destroying objects.

= These include:
= Constructors — called when an object is created. Can have many defined per class.

= Destructor — one per class, called when an object is destroyed
= Copy - called when an object is created by copying an existing object

= Move — a feature of C++11 that is used in certain circumstances to avoid copies.

BOSTON
UNIVERSITY

Construction and Destruction

= The constructor is called when an = The destructor is called when an

object is created. object goes out of scope.
= Example:
= This is used to initialize an object: void fonotionO 1
= Load values into member variables ClassOne cl :
= Open files }

= Connect to hardware, databases,

networks, etc. = Object cl is created when the

program reaches the first line of
the function, and destroyed when
the program leaves the function.

BOSTON
UNIVERSITY

When an object is instantiated.. *nctude "Rectangte

int main(int argc, char** argv) {
Rectangle rT ;

= The rT object Is created in memory. Tom width = 1.0 -

= When it Is created Its constructor iIs called to
do any necessary initialization. return 0;

= The constructor can take any number of
arguments like any other function but it Rectangle::Rectangle() {
cannot return any values.)

= What if there are multiple constructors?
= The compiler follows standard function overload rules. Note the constructor

has no return type!
BOSTON

UNIVERSITY

o
A second constructor

rectangle.h rectangle.cpp
class Rectangle #include "rectangle.h“
{ public: /* C++11 style */
Rectangle() ; Rectangle: :Rectangle (const float width,
Rectangle (const float width, const float length):
const float length) ; m width (width),
m length (length)
/* etc */ {
}; /* extra code could go here */

= Adding a second constructor is similar to overloading a
function.

= Here the modern C++11 style is used to set the member
values — this is called a member initialization list

Member Initialization Lists

" Syntax: , Colon goes here
_ MyClass (int A, OtherClass &B, float C):"
Members assigned _» m A(R),
and separated with__ m B(B),
commas. The order m C(C) {

doesn’t matter. /* other code can go here */

/

/

Additional code can be
added in the code
block.

BOSTON
UNIVERSITY

#include <iostream>

And now use both constructors

using namespace std;

= Both constructors are now used. #include "Rectangle.h™
The new constructor initializes the
. . int ' int , char**
values when the object is created. Tn main(int arge, char®* argv)
= Constructors are used to:
. Initiali b Rectangle rT ;
nitia |z§ MEMDETS rT.m width = 1.0 ;
= QOpen files rT.m length = 2.0 ;
= Connect to databases
= Etc cout << rT.Area() << endl ;

Rectangle rT 2(2.0,2.0) ;
cout << rT 2.Area() << endl ;

return O;

BOSTON
UNIVERSITY

DefaUIt Va|UeS class Rectangle {

public:
Rectangle () ;
Rectangle (const float width,

= C++11 added the ability to define default const float length) ;

values in headers in an intuitive way.

Rectangle (const Rectangle& oriqg) ;

= Pre-C++11 default values would have been virtual ~Rectangle();

coded into constructors. float m length = 0.0 ;

float m width = 0.0 ;
= |If members with default values get their value
set in constructor than the default value is
ignored.

= i.e. no “double setting” of the value. private:

float Area () ;
float ScaledArea (const float scale);

s

BOSTON
UNIVERSITY

Default constructors and destructors

= The two methods created by Eclipse automatically class Foo I
are explicit versions of the default C++ constructors public:

and destructors. Foo() = delete ;
// Another constructor

// must be defined!

= Every class has them — if you don'’t define them then Foo (int x) ;
empty ones that do nothing will be created for you by bi
the compiler. class Bar |
= |f you really don’t want the default constructor you can public:
delete it with the delete keyword. Bar () = default ;

= Also in the header file you can use the default keyword bi
if you like to be clear that you are using the default.

BOSTON
UNIVERSITY

Custom constructors and destructors

= You must define your own constructor when you want to initialize an
object with arguments.

= A custom destructor is always needed when internal members in the
class need special handling.

= Examples: manually allocated memory, open files, hardware drivers, database or
network connections, custom data structures, etc.

BOSTON |
UNIVERSITY

This class just has 2 floats as members which are

DeStru Cto IS automatically removed from memory by the compiler.

pd

= Destructors are called when an object is Rectangle: :~Rectangle ()
destroyed. {

= Destructors have no return type. }

= There is only one destructor allowed per
class.

= QObjects are destroyed when they go out
of scope.
= Destructors are never called explicitly by

the programmer. Calls to destructors are ~House() destructor
Inserted automatically by the compiler.

BOSTON House object =—> |
UNIVERSITY i

Destructors

= Example:
class Example { Example: :Example (int count) {
public: // Allocate memory to store "count"
Example () = delete ; // floats.
Example (int count) ; values = new float|[count];

virtual ~Example () ;
Example: :~Example () {

// A pointer to some memory // The destructor must free this
// that will be allocated. // memory. Only do so if values 1s not
float *values = nullptr ; // null.

Y if (values) {
delete|[] values ;

BOSTON
UNIVERSITY

Scope

= Scope is the region where a variable is valid.
= Constructors are called when an object is created.
= Destructors are only ever called implicitly.

int main() { // Start of a code block
// 1in main function scope
float x ; // No constructors for built-in types
ClassOne cl ; // ¢l constructor ClassOne() 1is called.
if (1){ // Start of an inner code block
// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne () 1s called.
} // c2 destructor ~ClassOne () is called.
ClassOne c¢3 ; // c¢c3 constructor ClassOne() 1s called.
} // leaving program, call destructors for c¢3 and cl ~ClassOne ()

// variable x: no destructor for built-in type

BOSTON
UNIVERSITY

Copy, Assignment, and Move Constructors

The compiler will automatically create constructors to deal with copying, assignment, and
moving. NetBeans filled in an empty default copy constructor for us.

= How do you know if you need to write one?

= When the code won’t compile and the error message says you need one!
= OR unexpected things happen when running.

= You may require custom code when...
= dealing with open files inside an object

= The class manually allocated memory Rectangle rT 1(1.0,2.0) ;
= Hardware resources (a serial port) opened inside an object // Now use the copy constructor
= Etc Rectangle rT 2(rT 1) ;

// Do an assignment, with the
// default assignment operator
rT 2 = rT 1

.
14

BOSTON
UNIVERSITY

Templates and classes

= Classes can also be created via templates in C++

= Templates can be used for type definitions with:
= Entire class definitions
= Members of the class
= Methods of the class

= Templates can be used with class inheritance as well.

= This topic is way beyond the scope of this tutorial!

BOSTON
UNIVERSITY

N
Tutorial Outline: Part 3

= Defining Classes

[- Class inheritance]
= Public, private, and protected access

= Virtual functions

BOSTON
UNIVERSITY

Inheritance

= [nheritance Is the ability to form a

hierarchy of classes where they
share common members and Molecule
methods.

= Helps with: code re-use, consistent | | |

programming, program organization
. Inorganicg Organic
= This is a powerful concept!
L Mineral L Protein

BOSTON
UNIVERSITY

Inheritance

= The class being derived from is referred
to as the base, parent, or super class.

= The class being derived is the derived,
child, or sub class.

= For consistency, we’'ll use superclass
and subclass in this tutorial. A base class
IS the one at the top of the hierarchy.

BOSTON
UNIVERSITY

Superclass \

Base Class

/

Molecule
Subclass

V| |

o ooene

=

\4

Output Stream

I n h e ritan Ce i n ACti O n ios_base |[*—— ios ostream T ofsream

*+— ostringstream

F 3

= Streams in C++ are series of characters = Writing to the terminal is straightforward:
— the C+ I/O system is based on this
concept. cout << some variable ;

= cout is an object of the class ostream. It ~ * How might an object of class ofstream or

is a write-only series of characters that ostringstream be used if we want to write
prints to the terminal. characters to a file or to a String?

= There are two subclasses of ostream:
= ofstream — write characters to a file
= ostringstream — write characters to a string

BOSTON
UNIVERSITY

Output Stream

Inheritance In Action o be | 1os

B B ofstream

F 3

ostream

*+— ostringstream

= For ofstream and ofstringstream the << operator is inherited from ostream
and behaves the same way for each from the programmer’s point of view.

= The ofstream class adds a constructor to open a file and a close() method.
= ofstringstream adds a method to retrieve the underlying string, str()

= |f you wanted a class to write to something else, like a USB port...
= Maybe look into inheriting from ostream!

= Or its underlying class, basic_ostream which handles types other than characters...
BOSTON
UNIVERSITY

Output Stream

I n h e ritan Ce i n ACti O n ios_base |[*—— ios ostream T ofsream

*+— ostringstream

F 3

#include <iostream> // cout
#include <fstream> // ofstream
#include <sstream> // ostringstream

using namespace std ;
void some func(string msg) {
cout << msg ; // to the terminal
// The constructor opens a file for writing
ofstream my file("filename.txt") ;
// Write to the file.
my file << msg ;
// close the file.
my file.close() ;
ostringstream oss ;
// Write to the stringstream
o0ss << msg ;
// Get the string from stringstream
cout << oss.str() ;

BOSTON }
UNIVERSITY

N
Tutorial Outline: Part 3

= Defining Classes
= Class inheritance
[- Public, private, and protected access}

= Virtual functions

BOSTON
UNIVERSITY

“There are only two things wrong with C++: The initial concept
and the implementation.”

P u b I I C : p rote Cte d : p rIV ate — Bertrand Meyer (inventor of the Eiffel OOP language)

class Rectangle

{

public:
= Public and private were added by Rectangle() ;
Rectangle (float width, float length) ;
NetBeans to the Rectangle class. virtual ~Rectangle ()
float m width ;
= These are used to control access float m_length ;
to parts of the class with float Area()
Inheritance.
protected:
private:

};

BOSTON
UNIVERSITY

C++ Access Control and Inheritance

Access public protected private
Same class Yes Yes Yes
Subclass Yes Yes No
Outside classes Yes No No
Inheritance
class Super { > o1 N bl
public: c ags Sub : public Super {
int 1: // in methods, could access
protected: // 1 and Jj from Parent only.
int 3 ; b 1
private:
int k ; Outside code
b Sub myobj

Myobj.i = 10 ; // public - ok
Myobj.j = 3 ; // protected - Compiler error

BOSTON Myobj.k =1 ; // private - Compiler error
UNIVERSITY

-

class A

Inheritance

N

~

class B : public A

» | public A

public

protected

» | protected A

\ private

= With inheritance subclasses have access
to private and protected members and

methods all the way back to the base
class.

= Each subclass can still define its own
public, protected, and private members
and methods along the way.

BOSTON
UNIVERSITY

~

public

\

protected

private

-

A

class C : public B

~

A

A

\

public A public publicB |«
protected A protected protected B
private

)

Single vs Multiple Inheritance

= C++ supports creating relationships where a subclass

A
Inherits data members and methods from a single B C
D

superclass: single inheritance

= C++ also support inheriting from multiple classes
simultaneously: Multiple inheritance

= This tutorial will only cover single inheritance. o _ _ _
= With multiple inheritance a hierarchy like

" Generally speaking... this is possible to create...this is
= Multiple inheritance requires a large amount of design effort nicknamed the Deadly Diamond of

= [t's an easy way to end up with overly complex, fragile code Death.

= Java and C# (both came after C++) exclude multiple
inheritance on purpose to avoid problems with it.

BOSTON
UNIVERSITY

C++ Inheritance Syntax

= |nheritance syntax pattern: ;};iic%uper t
class SubclassName : public SuperclassName ini.: i;
protected:
int j ;
= Here the public keyword is used. private:
= Methods implemented in class Sub can access any public or } ; '
protected members and methods in Super but cannot access
anything that is private. class Sub : public Super {
/..
};
= Other inheritance types are protected and private.

BOSTON
UNIVERSITY

Square

= Let's make a subclass of Rectangle called Square.

= Open the NetBeans project Shapes

= This has the Rectangle class from Part 2 implemented.
= Add a class named Square.

= Make it inherit from Rectangle.

BOSTON
UNIVERSITY

Square.h Square.cpp

#ifndef SQUARE H #include “Square.h"
#define SQUARE H

Square: :Square ()
#include "Rectangle.h" {}

Square: :~Square ()

class Square : public Rectangle {}
{
public:
Square () ;

virtual ~Square() ;

protected: = Note that subclasses are free to add any number
private: of new methods or members, they are not limited
}; to those in the superclass.

#endif // SQUARE H

= Class Square inherits from class Rectangle

BOSTON
UNIVERSITY

A new Square constructor is needed.

= A square is, of course, just a rectangle with equal length and width.
= The area can be calculated the same way as a rectangle.

= Our Square class therefore needs just one value to initialize it and it can
re-use the Rectangle.Area() method for its area.

= Go ahead and try it:

= Add an argument to the default constructor in Square.h
= Update the constructor in Square.cpp to do...?

= Remember Square can access the public members and methods in its superclass

BOSTON
UNIVERSITY

Solution 1

#ifndef SQUARE H
#define SQUARE H

#include “Rectangle.h"

class Square : public Rectangle

{
public:
Square (float width) ;
virtual ~Square() ;

protected:

private:

};

#endif // SQUARE H

#include “Square.h"

Square: :Square (float length) :
m width (length), m length(length)

{

}

BOSTON
UNIVERSITY

Square can access the public members in its superclass.

Its constructor can then just assign the length of the side to the
Rectangle m_width and m_length.

This is unsatisfying — while there is nothing wrong with this it's
not the OOP way to do things.

Why re-code the perfectly good constructor in Rectangle?

The delegating constructor

= (C++11 added a new constructor type
called the delegating constructor.

= Using member initialization lists you can —,
call one constructor from another.

= Even better: with member initialization
lists C++ can call superclass

class class c {
public:
int max;
int min;
int middle;

class c(int my max) {
max = my max > ? my max ;
}

class c(int my max, int my min)
min

: class c(my max)
&& my min < max ? my min :

my min >

}

class c(int my max, int my min, int my middle)
class ¢ (my max, my min) {

my middle < max &&

my middle > min ? my middle :

middle

.
14

.
14

{

constructors!

Reference:
https://msdn.microsoft.com/en-us/library/dn387583.aspx

BOSTON
UNIVERSITY

Square: :Square (float length)
Rectangle (length, length)
{
// other code could go here.

}

Solution 2

#ifndef SQUARE H
#define SQUARE H

#include "Rectangle.h"

class Square : public Rectangle

{
public:
Square (float width) ;
virtual ~Square() ;

protected:

private:

};

#endif // SQUARE H

#include "Square.h"

Square: :Square (float length)
Rectangle (length, length) {}

BOSTON
UNIVERSITY

= Square can directly call its superclass constructor and let the
Rectangle constructor make the assignment to m_width and
m_length.

= This saves typing, time, and reduces the chance of adding
bugs to your code.

= The more complex your code, the more compelling this statement
IS.

= Code re-use is one of the prime reasons to use OOP.

Trying it out In main()

= What happens behind the scenes finclude <iostream>
when this is Complled using namespace std;
sQ.Area() #include “Square.h"

int main()
Square class {
does not
implement Area() Square sQ(4)
so compiler looks
to superclass // Uses the Rectangle Area () method!

cout << sQ.Area() << endl ;

Finds Area() in
Rectangle class.

return O;

Inserts call to
Rectangle.Area()

method in
BOSTOIN -
compiled code.

More on Destructors

= When a subclass object is
removed from memory, its _
i . Square object is
destructor is called as it is for any T EEE] e
object. memory

= |ts superclass destructor is than _square() is called
also called . .

= Each subclass should only clean
up its own problems and let
superclasses clean up theirs. called

~Rectangle() is

BOSTON
UNIVERSITY

