


Tutorial Outline: Part 3

[ = Defining Classes }
= Class inheritance
= Public, private, and protected access
= Virtual functions
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A first C++ class

= QOpen project Basic_Rectangle.
= We’ll add our own custom class to this project.
= A C++ class consists of 2 files: a header file (.h) and a source file (.cpp)

= The header file contains the definitions for the types and names of members, methods, and
how the class relates to other classes (if it does).

= The source file contains the code that implements the functionality of the class

= Sometimes there is a header file for a class but no source file.
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= An IDE is very useful for setting up code that follows patterns and configuring the build
system to compile them.

= This saves time and effort for the programmer.

= Right-click on the Basic_Rectangle project and choose New =Class



% New C++ Class o [m] s
C++ Class
{
i Create a new C++ class. I\S.,)
Source folder: Basic_Rectangle/src Browse...

| |Namespace: Browse

[ | lee It the name | Class name: |Rectang|e|

Base classes:

Rectangle and click , Add-
the Finish button. S
= Open the new files | ethod stubs
Rectangle.h and i Do vesmerr pabeyes deitio
Rectangle.cpp 8 ooy crempte|re s
1 Header: Rectangle.h Browse...
Source: Rectangle.cpp Browse...
I:I Unit Test: Browse
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RECtang|6h f Rectangle.h

Class name
Created on: Sep 9, 2019
Author: bgregor
[ ] lll

keyword '
#1ifndef RECTANGLE H_ Curly brace
#define REETANELE_:'/
class Rectangle {

Access — puhlic .

control Rectangle(];

virtual ~Rectangle();

Curly brace H;
and a —

semi-colon. #endif /* RECTANGLE H_ */
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Default declared methods

* Rectangle.h
= Rectangle();

Created on: S5ep 9, 2019
= A constructor. Called when an object of this class is

Author: bgregor

created. ¥
#ifndef RECTANGLE H_
= ~Rectangle(); gdefine RECTANGLE_H_
= A destructor. Called when an object of this class is
removed from memory, i.e. destroyed. class Rectangle {

public:
Rectangle();
virtual ~Rectangle();

= [gnore the virtual keyword for now.

hE

#endif /* RECTANGLE _H_ */
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Rectangle.cpp
Rectangle.c
g) F)r) Created on: Sep 2| 2019
Author: bgregor

Header file included \ f
#include "Rectangle.h"

Rectangle: :Rectangle() {

Class_name:: pattern indicates - Auto-generated constructor stub
the method declared in the header }
Is being implemented in code

here. Rectangle: :~Rectangle() {

I Auto-generated destructor stub

}

Methods are otherwise regular
functions with arguments () and
matched curly braces {}.

BOSTON
UNIVERSITY




Let’'s add some functionality

= A Rectangle class should store a class Rectangle {

) public:
length and a width. Rectangle() :

= To make it useful, let’s have it virtual ~Rectangle();
supply an Area() method to

compute its own area. float m_length ;

float m width ;

= Edit the header file to look like the float Areal) ;
code to the right. float ScaledArealconst fleoat scale);
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.
Encapsulation

= Bundling the data and area calculation for a rectangle into a
single class is an example of the concept of encapsulation.
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The code for the two methods Is needed

= Right-click in the Rectangle.h
window and choose
Source->Implement Methods

[ Paste Ctri+v

Quick Fix Ctrl+1 _
Refactor k x| shift Right
Declarations 3 <= shift Left
References 3 Correct Indentation trl+
Search Text 3 Format Shift+Ctrl+F
Resource Configurations 3 Add Include shift+Ctrl+M
Show Concurrency Organize Includes shift+Ctri4+0
Selective Instrumentation b Override Methods...
i Run As b Generate Getters and Setters...
| 4% Debug As 3 Implement Method...
Grap‘ Profile As bl . 3
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= Click Select All then click OK.

% Implement Method o x

% float Areal) ; Select all

'+ float ScaledArealconst float scale);

Deselect all

i Select Methods to implement:

Preview = Cancel
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float Rectangle::Areal) {

I:III |n the methOdS : return m_length * m width ;

= Step 1: add some comments. float Rectangle::ScaledArea(const float scale) {
// Calculate the area and multiply 1t

= Step 2: add some code. o’
// by the scale argument. Return 1t.

= Member variables can be accessed as though they were passed to the method.
= Methods can also call each other.
= Fill in the Area() method and then write your own ScaledArea(). Don’t forget to compile!
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N
Using the new class

= Open Basic_Rectangle.cpp = We'll do this together...

= Add an include statement for
the new Rectangle.h

= Create a Rectangle object
and call its methods.
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Special methods

= There are several methods that deal with creating and
destroying objects.

= These include:
= Constructors — called when an object is created. Can have many defined per class.

= Destructor — one per class, called when an object is destroyed
= Copy - called when an object is created by copying an existing object

= Move — a feature of C++11 that is used in certain circumstances to avoid copies.
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Construction and Destruction

= The constructor is called when an = The destructor is called when an

object is created. object goes out of scope.
= Example:
= This is used to initialize an object: void fonotionO 1
= Load values into member variables ClassOne cl :
= Open files }

= Connect to hardware, databases,

networks, etc. = Object cl is created when the

program reaches the first line of
the function, and destroyed when
the program leaves the function.
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When an object is instantiated.. *nctude "Rectangte

int main(int argc, char** argv) {
Rectangle rT ;

= The rT object Is created in memory. Tom width = 1.0 -

= When it Is created Its constructor iIs called to
do any necessary initialization. return 0;

= The constructor can take any number of
arguments like any other function but it Rectangle::Rectangle() {
cannot return any values. )

= What if there are multiple constructors?
= The compiler follows standard function overload rules. Note the constructor

has no return type!
BOSTON
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o
A second constructor

rectangle.h rectangle.cpp
class Rectangle #include "rectangle.h“
{ public: /* C++11 style */
Rectangle() ; Rectangle: :Rectangle (const float width,
Rectangle (const float width, const float length):
const float length) ; m width (width),
m length (length)
/* etc */ {
}; /* extra code could go here */

= Adding a second constructor is similar to overloading a
function.

= Here the modern C++11 style is used to set the member
values — this is called a member initialization list



Member Initialization Lists

" Syntax: , Colon goes here
_ MyClass (int A, OtherClass &B, float C):"
Members assigned _» m A(R),
and separated with__ m B(B),
commas. The order m C(C) {

doesn’t matter. /* other code can go here */

/

/

Additional code can be
added in the code
block.
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#include <iostream>

And now use both constructors

using namespace std;

= Both constructors are now used. #include "Rectangle.h™
The new constructor initializes the
. . int ' int , char**
values when the object is created. Tn main(int arge, char®* argv)
= Constructors are used to:
. Initiali b Rectangle rT ;
nitia |z§ MEMDETS rT.m width = 1.0 ;
= QOpen files rT.m length = 2.0 ;
= Connect to databases
= Etc cout << rT.Area() << endl ;

Rectangle rT 2(2.0,2.0) ;
cout << rT 2.Area() << endl ;

return O;
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DefaUIt Va|UeS class Rectangle {

public:
Rectangle () ;
Rectangle (const float width,

= C++11 added the ability to define default const float length) ;

values in headers in an intuitive way.

Rectangle (const Rectangle& oriqg) ;

= Pre-C++11 default values would have been virtual ~Rectangle();

coded into constructors. float m length = 0.0 ;

float m width = 0.0 ;
= |If members with default values get their value
set in constructor than the default value is
ignored.

= i.e. no “double setting” of the value. private:

float Area () ;
float ScaledArea (const float scale);

s
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Default constructors and destructors

= The two methods created by Eclipse automatically class Foo I
are explicit versions of the default C++ constructors public:

and destructors. Foo() = delete ;
// Another constructor

// must be defined!

= Every class has them — if you don'’t define them then Foo (int x) ;
empty ones that do nothing will be created for you by bi
the compiler. class Bar |
= |f you really don’t want the default constructor you can public:
delete it with the delete keyword. Bar () = default ;

= Also in the header file you can use the default keyword bi
if you like to be clear that you are using the default.
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Custom constructors and destructors

= You must define your own constructor when you want to initialize an
object with arguments.

= A custom destructor is always needed when internal members in the
class need special handling.

= Examples: manually allocated memory, open files, hardware drivers, database or
network connections, custom data structures, etc.

BOSTON |
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This class just has 2 floats as members which are

DeStru Cto IS automatically removed from memory by the compiler.

pd

= Destructors are called when an object is Rectangle: :~Rectangle ()
destroyed. {

= Destructors have no return type. }

= There is only one destructor allowed per
class.

= QObjects are destroyed when they go out
of scope.
= Destructors are never called explicitly by

the programmer. Calls to destructors are ~House() destructor
Inserted automatically by the compiler.

BOSTON House object =—> |
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Destructors

= Example:
class Example { Example: :Example (int count) {
public: // Allocate memory to store "count"
Example () = delete ; // floats.
Example (int count) ; values = new float|[count];

virtual ~Example () ;
Example: :~Example () {

// A pointer to some memory // The destructor must free this
// that will be allocated. // memory. Only do so if values 1s not
float *values = nullptr ; // null.

Y if (values) {
delete|[] values ;
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Scope

= Scope is the region where a variable is valid.
= Constructors are called when an object is created.
= Destructors are only ever called implicitly.

int main() { // Start of a code block
// 1in main function scope
float x ; // No constructors for built-in types
ClassOne cl ; // ¢l constructor ClassOne() 1is called.
if (1){ // Start of an inner code block
// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne () 1s called.
} // c2 destructor ~ClassOne () is called.
ClassOne c¢3 ; // c¢c3 constructor ClassOne() 1s called.
} // leaving program, call destructors for c¢3 and cl ~ClassOne ()

// variable x: no destructor for built-in type
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Copy, Assignment, and Move Constructors

The compiler will automatically create constructors to deal with copying, assignment, and
moving. NetBeans filled in an empty default copy constructor for us.

= How do you know if you need to write one?

= When the code won’t compile and the error message says you need one!
= OR unexpected things happen when running.

= You may require custom code when...
= dealing with open files inside an object

= The class manually allocated memory Rectangle rT 1(1.0,2.0) ;
= Hardware resources (a serial port) opened inside an object // Now use the copy constructor
= Etc Rectangle rT 2(rT 1) ;

// Do an assignment, with the
// default assignment operator
rT 2 = rT 1

.
14
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Templates and classes

= Classes can also be created via templates in C++

= Templates can be used for type definitions with:
= Entire class definitions
= Members of the class
= Methods of the class

= Templates can be used with class inheritance as well.

= This topic is way beyond the scope of this tutorial!
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Tutorial Outline: Part 3

= Defining Classes

[- Class inheritance ]
= Public, private, and protected access

= Virtual functions
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Inheritance

= [nheritance Is the ability to form a

hierarchy of classes where they
share common members and Molecule
methods.

= Helps with: code re-use, consistent | | |

programming, program organization
. Inorganicg Organic
= This is a powerful concept!
L Mineral L Protein
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Inheritance

= The class being derived from is referred
to as the base, parent, or super class.

= The class being derived is the derived,
child, or sub class.

= For consistency, we’'ll use superclass
and subclass in this tutorial. A base class
IS the one at the top of the hierarchy.

BOSTON
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Output Stream

I n h e ritan Ce i n ACti O n ios_base |[*—— ios ostream T ofsream

*+— ostringstream

F 3

= Streams in C++ are series of characters = Writing to the terminal is straightforward:
— the C+ I/O system is based on this
concept. cout << some variable ;

= cout is an object of the class ostream. It ~ * How might an object of class ofstream or

is a write-only series of characters that ostringstream be used if we want to write
prints to the terminal. characters to a file or to a String?

= There are two subclasses of ostream:
= ofstream — write characters to a file
= ostringstream — write characters to a string
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Output Stream

Inheritance In Action o be | 1os

B B ofstream

F 3

ostream

*+— ostringstream

= For ofstream and ofstringstream the << operator is inherited from ostream
and behaves the same way for each from the programmer’s point of view.

= The ofstream class adds a constructor to open a file and a close() method.
= ofstringstream adds a method to retrieve the underlying string, str()

= |f you wanted a class to write to something else, like a USB port...
= Maybe look into inheriting from ostream!

= Or its underlying class, basic_ostream which handles types other than characters...
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Output Stream

I n h e ritan Ce i n ACti O n ios_base |[*—— ios ostream T ofsream

*+— ostringstream

F 3

#include <iostream> // cout
#include <fstream> // ofstream
#include <sstream> // ostringstream

using namespace std ;
void some func(string msg) {
cout << msg ; // to the terminal
// The constructor opens a file for writing
ofstream my file("filename.txt") ;
// Write to the file.
my file << msg ;
// close the file.
my file.close() ;
ostringstream oss ;
// Write to the stringstream
o0ss << msg ;
// Get the string from stringstream
cout << oss.str() ;

BOSTON }
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= Defining Classes
= Class inheritance
[- Public, private, and protected access}

= Virtual functions
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“There are only two things wrong with C++: The initial concept
and the implementation.”

P u b I I C : p rote Cte d : p rIV ate — Bertrand Meyer (inventor of the Eiffel OOP language)

class Rectangle

{

public:
= Public and private were added by Rectangle() ;
Rectangle (float width, float length) ;
NetBeans to the Rectangle class. virtual ~Rectangle ()
float m width ;
= These are used to control access float m_length ;
to parts of the class with float Area()
Inheritance.
protected:
private:

};
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C++ Access Control and Inheritance

Access public protected private
Same class Yes Yes Yes
Subclass Yes Yes No
Outside classes Yes No No
Inheritance
class Super { > o1 N bl
public: c ags Sub : public Super {
int 1: // in methods, could access
protected: // 1 and Jj from Parent only.
int 3 ; b 1
private:
int k ; Outside code
b Sub myobj

Myobj.i = 10 ; // public - ok
Myobj.j = 3 ; // protected - Compiler error

BOSTON Myobj.k =1 ; // private - Compiler error
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-

class A

Inheritance

N

~

class B : public A

» | public A

public

protected

» | protected A

\ private

= With inheritance subclasses have access
to private and protected members and

methods all the way back to the base
class.

= Each subclass can still define its own
public, protected, and private members
and methods along the way.
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public

\

protected

private

-

A

class C : public B

~

A

A

\

public A public publicB |«
protected A protected protected B
private

)




Single vs Multiple Inheritance

= C++ supports creating relationships where a subclass

A
Inherits data members and methods from a single B C
D

superclass: single inheritance

= C++ also support inheriting from multiple classes
simultaneously: Multiple inheritance

= This tutorial will only cover single inheritance. o _ _ _
= With multiple inheritance a hierarchy like

" Generally speaking... this is possible to create...this is
= Multiple inheritance requires a large amount of design effort nicknamed the Deadly Diamond of

= [t's an easy way to end up with overly complex, fragile code Death.

= Java and C# (both came after C++) exclude multiple
inheritance on purpose to avoid problems with it.
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C++ Inheritance Syntax

= |nheritance syntax pattern: ;};iic%uper t
class SubclassName : public SuperclassName ini.: i;
protected:
int j ;
= Here the public keyword is used. private:
= Methods implemented in class Sub can access any public or } ; '
protected members and methods in Super but cannot access
anything that is private. class Sub : public Super {
/..
};
= Other inheritance types are protected and private.
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Square

= Let's make a subclass of Rectangle called Square.

= Open the NetBeans project Shapes

= This has the Rectangle class from Part 2 implemented.
= Add a class named Square.

= Make it inherit from Rectangle.
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Square.h Square.cpp

#ifndef SQUARE H #include “Square.h"
#define SQUARE H

Square: :Square ()
#include "Rectangle.h" {}

Square: :~Square ()

class Square : public Rectangle {}
{
public:
Square () ;

virtual ~Square() ;

protected: = Note that subclasses are free to add any number
private: of new methods or members, they are not limited
}; to those in the superclass.

#endif // SQUARE H

= Class Square inherits from class Rectangle
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A new Square constructor is needed.

= A square is, of course, just a rectangle with equal length and width.
= The area can be calculated the same way as a rectangle.

= Our Square class therefore needs just one value to initialize it and it can
re-use the Rectangle.Area() method for its area.

= Go ahead and try it:

= Add an argument to the default constructor in Square.h
= Update the constructor in Square.cpp to do...?

= Remember Square can access the public members and methods in its superclass
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Solution 1

#ifndef SQUARE H
#define SQUARE H

#include “Rectangle.h"

class Square : public Rectangle

{
public:
Square (float width) ;
virtual ~Square() ;

protected:

private:

};

#endif // SQUARE H

#include “Square.h"

Square: :Square (float length) :
m width (length), m length(length)

{

}

BOSTON
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Square can access the public members in its superclass.

Its constructor can then just assign the length of the side to the
Rectangle m_width and m_length.

This is unsatisfying — while there is nothing wrong with this it's
not the OOP way to do things.

Why re-code the perfectly good constructor in Rectangle?



The delegating constructor

= (C++11 added a new constructor type
called the delegating constructor.

= Using member initialization lists you can —,
call one constructor from another.

= Even better: with member initialization
lists C++ can call superclass

class class c {
public:
int max;
int min;
int middle;

class c(int my max) {
max = my max > ? my max ;
}

class c(int my max, int my min)
min

: class c(my max)
&& my min < max ? my min :

my min >

}

class c(int my max, int my min, int my middle)
class ¢ (my max, my min) {

my middle < max &&

my middle > min ? my middle :

middle

.
14

.
14

{

constructors!

Reference:
https://msdn.microsoft.com/en-us/library/dn387583.aspx
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Square: :Square (float length)
Rectangle (length, length)
{
// other code could go here.

}




Solution 2

#ifndef SQUARE H
#define SQUARE H

#include "Rectangle.h"

class Square : public Rectangle

{
public:
Square (float width) ;
virtual ~Square() ;

protected:

private:

};

#endif // SQUARE H

#include "Square.h"

Square: :Square (float length)
Rectangle (length, length) {}
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= Square can directly call its superclass constructor and let the
Rectangle constructor make the assignment to m_width and
m_length.

= This saves typing, time, and reduces the chance of adding
bugs to your code.

= The more complex your code, the more compelling this statement
IS.

= Code re-use is one of the prime reasons to use OOP.



Trying it out In main()

= What happens behind the scenes finclude <iostream>
when this is Complled using namespace std;
sQ.Area() #include “Square.h"

int main()
Square class {
does not
implement Area() Square sQ(4)
so compiler looks
to superclass // Uses the Rectangle Area () method!

cout << sQ.Area() << endl ;

Finds Area() in
Rectangle class.

return O;

Inserts call to
Rectangle.Area()

method in
BOSTOIN -
compiled code.




More on Destructors

= When a subclass object is
removed from memory, its _
i . Square object is
destructor is called as it is for any T EEE] e
object. memory

= |ts superclass destructor is than _square() is called
also called . .

= Each subclass should only clean
up its own problems and let
superclasses clean up theirs. called

~Rectangle() is
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