
Introduction to C++: Part 3

Tutorial Outline: Part 3

 Defining Classes

 Class inheritance

 Public, private, and protected access

 Virtual functions

A first C++ class

 Open project Basic_Rectangle.

 We’ll add our own custom class to this project.

 A C++ class consists of 2 files: a header file (.h) and a source file (.cpp)

 The header file contains the definitions for the types and names of members, methods, and

how the class relates to other classes (if it does).

 The source file contains the code that implements the functionality of the class

 Sometimes there is a header file for a class but no source file.

Using Eclipse

 An IDE is very useful for setting up code that follows patterns and configuring the build

system to compile them.

 This saves time and effort for the programmer.

 Right-click on the Basic_Rectangle project and choose NewClass

 Give it the name

Rectangle and click

the Finish button.

 Open the new files

Rectangle.h and

Rectangle.cpp

Rectangle.h

keyword

Class name

Curly brace

Curly brace

and a

semi-colon.

Access

control

Default declared methods

 Rectangle();
 A constructor. Called when an object of this class is

created.

 ~Rectangle();
 A destructor. Called when an object of this class is

removed from memory, i.e. destroyed.

 Ignore the virtual keyword for now.

Rectangle.cpp

Header file included

Class_name:: pattern indicates

the method declared in the header

is being implemented in code

here.

Methods are otherwise regular

functions with arguments () and

matched curly braces {}.

Let’s add some functionality

 A Rectangle class should store a

length and a width.

 To make it useful, let’s have it

supply an Area() method to

compute its own area.

 Edit the header file to look like the

code to the right.

Encapsulation

 Bundling the data and area calculation for a rectangle into a

single class is an example of the concept of encapsulation.

The code for the two methods is needed

 Right-click in the Rectangle.h

window and choose

SourceImplement Methods

 Click Select All then click OK.

Fill in the methods

 Member variables can be accessed as though they were passed to the method.

 Methods can also call each other.

 Fill in the Area() method and then write your own ScaledArea(). Don’t forget to compile!

 Step 1: add some comments.

 Step 2: add some code.

Using the new class

 Open Basic_Rectangle.cpp

 Add an include statement for

the new Rectangle.h

 Create a Rectangle object

and call its methods.

 We’ll do this together…

Special methods

 There are several methods that deal with creating and

destroying objects.

 These include:
 Constructors – called when an object is created. Can have many defined per class.

 Destructor – one per class, called when an object is destroyed

 Copy – called when an object is created by copying an existing object

 Move – a feature of C++11 that is used in certain circumstances to avoid copies.

Construction and Destruction

 The constructor is called when an

object is created.

 This is used to initialize an object:

 Load values into member variables

 Open files

 Connect to hardware, databases,

networks, etc.

 The destructor is called when an

object goes out of scope.

 Example:

 Object c1 is created when the

program reaches the first line of

the function, and destroyed when

the program leaves the function.

void function() {

ClassOne c1 ;

}

When an object is instantiated…

 The rT object is created in memory.

 When it is created its constructor is called to

do any necessary initialization.

 The constructor can take any number of

arguments like any other function but it

cannot return any values.

 What if there are multiple constructors?
 The compiler follows standard function overload rules. Note the constructor

has no return type!

A second constructor

rectangle.h

class Rectangle

{

public:

Rectangle();

Rectangle(const float width,

const float length) ;

/* etc */

};

rectangle.cpp
#include "rectangle.h“

/* C++11 style */

Rectangle::Rectangle(const float width,

const float length):

m_width(width),

m_length(length)

{

/* extra code could go here */

}

 Adding a second constructor is similar to overloading a

function.

 Here the modern C++11 style is used to set the member

values – this is called a member initialization list

Member Initialization Lists

 Syntax:

MyClass(int A, OtherClass &B, float C):

m_A(A),

m_B(B),

m_C(C) {

/* other code can go here */

}

Colon goes here

Members assigned

and separated with

commas. The order

doesn’t matter.

Additional code can be

added in the code

block.

And now use both constructors

 Both constructors are now used.

The new constructor initializes the

values when the object is created.

 Constructors are used to:

 Initialize members

 Open files

 Connect to databases

 Etc.

#include <iostream>

using namespace std;

#include "Rectangle.h“

int main(int argc, char** argv)

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

Rectangle rT_2(2.0,2.0) ;

cout << rT_2.Area() << endl ;

return 0;

}

Default values

 C++11 added the ability to define default

values in headers in an intuitive way.

 Pre-C++11 default values would have been

coded into constructors.

 If members with default values get their value

set in constructor than the default value is

ignored.

 i.e. no “double setting” of the value.

class Rectangle {

public:

Rectangle();

Rectangle(const float width,

const float length) ;

Rectangle(const Rectangle& orig);

virtual ~Rectangle();

float m_length = 0.0 ;

float m_width = 0.0 ;

float Area() ;

float ScaledArea(const float scale);

private:

};

Default constructors and destructors

 The two methods created by Eclipse automatically

are explicit versions of the default C++ constructors

and destructors.

 Every class has them – if you don’t define them then

empty ones that do nothing will be created for you by

the compiler.

 If you really don’t want the default constructor you can

delete it with the delete keyword.

 Also in the header file you can use the default keyword

if you like to be clear that you are using the default.

class Foo {

public:

Foo() = delete ;

// Another constructor

// must be defined!

Foo(int x) ;

};

class Bar {

public:

Bar() = default ;

};

Custom constructors and destructors

 You must define your own constructor when you want to initialize an

object with arguments.

 A custom destructor is always needed when internal members in the

class need special handling.

 Examples: manually allocated memory, open files, hardware drivers, database or

network connections, custom data structures, etc.

Destructors

 Destructors are called when an object is

destroyed.

 Destructors have no return type.

 There is only one destructor allowed per

class.

 Objects are destroyed when they go out

of scope.

 Destructors are never called explicitly by

the programmer. Calls to destructors are

inserted automatically by the compiler.

Rectangle::~Rectangle()

{

}

This class just has 2 floats as members which are

automatically removed from memory by the compiler.

House object

~House() destructor

Destructors

 Example:

class Example {

public:

Example() = delete ;

Example(int count) ;

virtual ~Example() ;

// A pointer to some memory

// that will be allocated.

float *values = nullptr ;

};

Example::Example(int count) {

// Allocate memory to store "count"

// floats.

values = new float[count];

}

Example::~Example() {

// The destructor must free this

// memory. Only do so if values is not

// null.

if (values) {

delete[] values ;

}

}

Scope
 Scope is the region where a variable is valid.

 Constructors are called when an object is created.

 Destructors are only ever called implicitly.

int main() { // Start of a code block

// in main function scope

float x ; // No constructors for built-in types

ClassOne c1 ; // c1 constructor ClassOne() is called.

if (1){ // Start of an inner code block

// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne() is called.

} // c2 destructor ~ClassOne() is called.

ClassOne c3 ; // c3 constructor ClassOne() is called.

} // leaving program, call destructors for c3 and c1 ~ClassOne()

// variable x: no destructor for built-in type

Copy, Assignment, and Move Constructors

 The compiler will automatically create constructors to deal with copying, assignment, and

moving. NetBeans filled in an empty default copy constructor for us.

 How do you know if you need to write one?

 When the code won’t compile and the error message says you need one!

 OR unexpected things happen when running.

 You may require custom code when...

 dealing with open files inside an object

 The class manually allocated memory

 Hardware resources (a serial port) opened inside an object

 Etc.

Rectangle rT_1(1.0,2.0) ;

// Now use the copy constructor

Rectangle rT_2(rT_1) ;

// Do an assignment, with the

// default assignment operator

rT_2 = rT_1 ;

Templates and classes

 Classes can also be created via templates in C++

 Templates can be used for type definitions with:
 Entire class definitions

 Members of the class

 Methods of the class

 Templates can be used with class inheritance as well.

 This topic is way beyond the scope of this tutorial!

Tutorial Outline: Part 3

 Defining Classes

 Class inheritance

 Public, private, and protected access

 Virtual functions

Inheritance

 Inheritance is the ability to form a

hierarchy of classes where they

share common members and

methods.
 Helps with: code re-use, consistent

programming, program organization

 This is a powerful concept!

Molecule

Inorganic

Mineral

Organic

Protein

Inheritance
 The class being derived from is referred

to as the base, parent, or super class.

 The class being derived is the derived,

child, or sub class.

 For consistency, we’ll use superclass

and subclass in this tutorial. A base class

is the one at the top of the hierarchy.

Molecule

Inorganic

Mineral

Organic

Protein

Superclass

Subclass

Base Class

Inheritance in Action

 Streams in C++ are series of characters

– the C+ I/O system is based on this

concept.

 cout is an object of the class ostream. It

is a write-only series of characters that

prints to the terminal.

 There are two subclasses of ostream:

 ofstream – write characters to a file

 ostringstream – write characters to a string

 Writing to the terminal is straightforward:

cout << some_variable ;

 How might an object of class ofstream or

ostringstream be used if we want to write

characters to a file or to a string?

Inheritance in Action

 For ofstream and ofstringstream the << operator is inherited from ostream

and behaves the same way for each from the programmer’s point of view.

 The ofstream class adds a constructor to open a file and a close() method.

 ofstringstream adds a method to retrieve the underlying string, str()

 If you wanted a class to write to something else, like a USB port…
 Maybe look into inheriting from ostream!

 Or its underlying class, basic_ostream which handles types other than characters…

Inheritance in Action

#include <iostream> // cout

#include <fstream> // ofstream

#include <sstream> // ostringstream

using namespace std ;

void some_func(string msg) {

cout << msg ; // to the terminal

// The constructor opens a file for writing

ofstream my_file("filename.txt") ;

// Write to the file.

my_file << msg ;

// close the file.

my_file.close() ;

ostringstream oss ;

// Write to the stringstream

oss << msg ;

// Get the string from stringstream

cout << oss.str() ;

}

Tutorial Outline: Part 3

 Defining Classes

 Class inheritance

 Public, private, and protected access

 Virtual functions

Public, protected, private

 Public and private were added by

NetBeans to the Rectangle class.

 These are used to control access

to parts of the class with

inheritance.

class Rectangle

{

public:

Rectangle();

Rectangle(float width, float length) ;

virtual ~Rectangle();

float m_width ;

float m_length ;

float Area() ;

protected:

private:

};

“There are only two things wrong with C++: The initial concept

and the implementation.”

– Bertrand Meyer (inventor of the Eiffel OOP language)

C++ Access Control and Inheritance

Access public protected private

Same class Yes Yes Yes

Subclass Yes Yes No

Outside classes Yes No No

Sub myobj ;

Myobj.i = 10 ; // public - ok

Myobj.j = 3 ; // protected - Compiler error

Myobj.k = 1 ; // private - Compiler error

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// in methods, could access

// i and j from Parent only.

};

Inheritance

Outside code

Inheritance

 With inheritance subclasses have access

to private and protected members and

methods all the way back to the base

class.

 Each subclass can still define its own

public, protected, and private members

and methods along the way.

class A

public

protected

private

class B : public A

public

protected

private

public A

protected A

class C : public B

public A

protected A

public

protected

public B

protected B

private

Single vs Multiple Inheritance

 C++ supports creating relationships where a subclass

inherits data members and methods from a single

superclass: single inheritance

 C++ also support inheriting from multiple classes

simultaneously: Multiple inheritance

 This tutorial will only cover single inheritance.

 Generally speaking…

 Multiple inheritance requires a large amount of design effort

 It’s an easy way to end up with overly complex, fragile code

 Java and C# (both came after C++) exclude multiple

inheritance on purpose to avoid problems with it.

 With multiple inheritance a hierarchy like

this is possible to create…this is

nicknamed the Deadly Diamond of

Death.

D

B C

A

C++ Inheritance Syntax

 Inheritance syntax pattern:
class SubclassName : public SuperclassName

 Here the public keyword is used.
 Methods implemented in class Sub can access any public or

protected members and methods in Super but cannot access

anything that is private.

 Other inheritance types are protected and private.

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// ...

};

Square

 Let’s make a subclass of Rectangle called Square.

 Open the NetBeans project Shapes

 This has the Rectangle class from Part 2 implemented.

 Add a class named Square.

 Make it inherit from Rectangle.

 Class Square inherits from class Rectangle

Square.h Square.cpp

#ifndef SQUARE_H

#define SQUARE_H

#include "Rectangle.h"

class Square : public Rectangle

{

public:

Square();

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include “Square.h"

Square::Square()

{}

Square::~Square()

{}

 Note that subclasses are free to add any number

of new methods or members, they are not limited

to those in the superclass.

A new Square constructor is needed.

 A square is, of course, just a rectangle with equal length and width.

 The area can be calculated the same way as a rectangle.

 Our Square class therefore needs just one value to initialize it and it can

re-use the Rectangle.Area() method for its area.

 Go ahead and try it:

 Add an argument to the default constructor in Square.h

 Update the constructor in Square.cpp to do…?

 Remember Square can access the public members and methods in its superclass

Solution 1

 Square can access the public members in its superclass.

 Its constructor can then just assign the length of the side to the

Rectangle m_width and m_length.

 This is unsatisfying – while there is nothing wrong with this it’s

not the OOP way to do things.

 Why re-code the perfectly good constructor in Rectangle?

#ifndef SQUARE_H

#define SQUARE_H

#include “Rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include “Square.h"

Square::Square(float length):

m_width (length), m_length(length)

{

}

The delegating constructor

 C++11 added a new constructor type

called the delegating constructor.

 Using member initialization lists you can

call one constructor from another.

 Even better: with member initialization

lists C++ can call superclass

constructors!

Square::Square(float length) :

Rectangle(length,length)

{

// other code could go here.

}

class class_c {

public:

int max;

int min;

int middle;

class_c(int my_max) {

max = my_max > 0 ? my_max : 10;

}

class_c(int my_max, int my_min) : class_c(my_max) {

min = my_min > 0 && my_min < max ? my_min : 1;

}

class_c(int my_max, int my_min, int my_middle) :

class_c (my_max, my_min){

middle = my_middle < max &&

my_middle > min ? my_middle : 5;

}

};

Reference:
https://msdn.microsoft.com/en-us/library/dn387583.aspx

Solution 2

 Square can directly call its superclass constructor and let the

Rectangle constructor make the assignment to m_width and

m_length.

 This saves typing, time, and reduces the chance of adding

bugs to your code.

 The more complex your code, the more compelling this statement

is.

 Code re-use is one of the prime reasons to use OOP.

#ifndef SQUARE_H

#define SQUARE_H

#include "Rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "Square.h"

Square::Square(float length) :

Rectangle(length, length) {}

Trying it out in main()

 What happens behind the scenes

when this is compiled….

#include <iostream>

using namespace std;

#include “Square.h"

int main()

{

Square sQ(4) ;

// Uses the Rectangle Area() method!

cout << sQ.Area() << endl ;

return 0;

}

sQ.Area()

Square class
does not

implement Area()
so compiler looks

to superclass

Finds Area() in
Rectangle class.

Inserts call to
Rectangle.Area()

method in
compiled code.

More on Destructors
 When a subclass object is

removed from memory, its

destructor is called as it is for any

object.

 Its superclass destructor is than

also called .

 Each subclass should only clean

up its own problems and let

superclasses clean up theirs.

Square object is
removed from

memory

~Square() is called

~Rectangle() is
called

