
Introduction to C++: Part 3

Tutorial Outline: Part 3

 Defining Classes

 Class inheritance

 Public, private, and protected access

 Virtual functions

A first C++ class

 Open project Basic_Rectangle.

 We’ll add our own custom class to this project.

 A C++ class consists of 2 files: a header file (.h) and a source file (.cpp)

 The header file contains the definitions for the types and names of members, methods, and

how the class relates to other classes (if it does).

 The source file contains the code that implements the functionality of the class

 Sometimes there is a header file for a class but no source file.

Using Eclipse

 An IDE is very useful for setting up code that follows patterns and configuring the build

system to compile them.

 This saves time and effort for the programmer.

 Right-click on the Basic_Rectangle project and choose NewClass

 Give it the name

Rectangle and click

the Finish button.

 Open the new files

Rectangle.h and

Rectangle.cpp

Rectangle.h

keyword

Class name

Curly brace

Curly brace

and a

semi-colon.

Access

control

Default declared methods

 Rectangle();
 A constructor. Called when an object of this class is

created.

 ~Rectangle();
 A destructor. Called when an object of this class is

removed from memory, i.e. destroyed.

 Ignore the virtual keyword for now.

Rectangle.cpp

Header file included

Class_name:: pattern indicates

the method declared in the header

is being implemented in code

here.

Methods are otherwise regular

functions with arguments () and

matched curly braces {}.

Let’s add some functionality

 A Rectangle class should store a

length and a width.

 To make it useful, let’s have it

supply an Area() method to

compute its own area.

 Edit the header file to look like the

code to the right.

Encapsulation

 Bundling the data and area calculation for a rectangle into a

single class is an example of the concept of encapsulation.

The code for the two methods is needed

 Right-click in the Rectangle.h

window and choose

SourceImplement Methods

 Click Select All then click OK.

Fill in the methods

 Member variables can be accessed as though they were passed to the method.

 Methods can also call each other.

 Fill in the Area() method and then write your own ScaledArea(). Don’t forget to compile!

 Step 1: add some comments.

 Step 2: add some code.

Using the new class

 Open Basic_Rectangle.cpp

 Add an include statement for

the new Rectangle.h

 Create a Rectangle object

and call its methods.

 We’ll do this together…

Special methods

 There are several methods that deal with creating and

destroying objects.

 These include:
 Constructors – called when an object is created. Can have many defined per class.

 Destructor – one per class, called when an object is destroyed

 Copy – called when an object is created by copying an existing object

 Move – a feature of C++11 that is used in certain circumstances to avoid copies.

Construction and Destruction

 The constructor is called when an

object is created.

 This is used to initialize an object:

 Load values into member variables

 Open files

 Connect to hardware, databases,

networks, etc.

 The destructor is called when an

object goes out of scope.

 Example:

 Object c1 is created when the

program reaches the first line of

the function, and destroyed when

the program leaves the function.

void function() {

ClassOne c1 ;

}

When an object is instantiated…

 The rT object is created in memory.

 When it is created its constructor is called to

do any necessary initialization.

 The constructor can take any number of

arguments like any other function but it

cannot return any values.

 What if there are multiple constructors?
 The compiler follows standard function overload rules. Note the constructor

has no return type!

A second constructor

rectangle.h

class Rectangle

{

public:

Rectangle();

Rectangle(const float width,

const float length) ;

/* etc */

};

rectangle.cpp
#include "rectangle.h“

/* C++11 style */

Rectangle::Rectangle(const float width,

const float length):

m_width(width),

m_length(length)

{

/* extra code could go here */

}

 Adding a second constructor is similar to overloading a

function.

 Here the modern C++11 style is used to set the member

values – this is called a member initialization list

Member Initialization Lists

 Syntax:

MyClass(int A, OtherClass &B, float C):

m_A(A),

m_B(B),

m_C(C) {

/* other code can go here */

}

Colon goes here

Members assigned

and separated with

commas. The order

doesn’t matter.

Additional code can be

added in the code

block.

And now use both constructors

 Both constructors are now used.

The new constructor initializes the

values when the object is created.

 Constructors are used to:

 Initialize members

 Open files

 Connect to databases

 Etc.

#include <iostream>

using namespace std;

#include "Rectangle.h“

int main(int argc, char** argv)

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

Rectangle rT_2(2.0,2.0) ;

cout << rT_2.Area() << endl ;

return 0;

}

Default values

 C++11 added the ability to define default

values in headers in an intuitive way.

 Pre-C++11 default values would have been

coded into constructors.

 If members with default values get their value

set in constructor than the default value is

ignored.

 i.e. no “double setting” of the value.

class Rectangle {

public:

Rectangle();

Rectangle(const float width,

const float length) ;

Rectangle(const Rectangle& orig);

virtual ~Rectangle();

float m_length = 0.0 ;

float m_width = 0.0 ;

float Area() ;

float ScaledArea(const float scale);

private:

};

Default constructors and destructors

 The two methods created by Eclipse automatically

are explicit versions of the default C++ constructors

and destructors.

 Every class has them – if you don’t define them then

empty ones that do nothing will be created for you by

the compiler.

 If you really don’t want the default constructor you can

delete it with the delete keyword.

 Also in the header file you can use the default keyword

if you like to be clear that you are using the default.

class Foo {

public:

Foo() = delete ;

// Another constructor

// must be defined!

Foo(int x) ;

};

class Bar {

public:

Bar() = default ;

};

Custom constructors and destructors

 You must define your own constructor when you want to initialize an

object with arguments.

 A custom destructor is always needed when internal members in the

class need special handling.

 Examples: manually allocated memory, open files, hardware drivers, database or

network connections, custom data structures, etc.

Destructors

 Destructors are called when an object is

destroyed.

 Destructors have no return type.

 There is only one destructor allowed per

class.

 Objects are destroyed when they go out

of scope.

 Destructors are never called explicitly by

the programmer. Calls to destructors are

inserted automatically by the compiler.

Rectangle::~Rectangle()

{

}

This class just has 2 floats as members which are

automatically removed from memory by the compiler.

House object

~House() destructor

Destructors

 Example:

class Example {

public:

Example() = delete ;

Example(int count) ;

virtual ~Example() ;

// A pointer to some memory

// that will be allocated.

float *values = nullptr ;

};

Example::Example(int count) {

// Allocate memory to store "count"

// floats.

values = new float[count];

}

Example::~Example() {

// The destructor must free this

// memory. Only do so if values is not

// null.

if (values) {

delete[] values ;

}

}

Scope
 Scope is the region where a variable is valid.

 Constructors are called when an object is created.

 Destructors are only ever called implicitly.

int main() { // Start of a code block

// in main function scope

float x ; // No constructors for built-in types

ClassOne c1 ; // c1 constructor ClassOne() is called.

if (1){ // Start of an inner code block

// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne() is called.

} // c2 destructor ~ClassOne() is called.

ClassOne c3 ; // c3 constructor ClassOne() is called.

} // leaving program, call destructors for c3 and c1 ~ClassOne()

// variable x: no destructor for built-in type

Copy, Assignment, and Move Constructors

 The compiler will automatically create constructors to deal with copying, assignment, and

moving. NetBeans filled in an empty default copy constructor for us.

 How do you know if you need to write one?

 When the code won’t compile and the error message says you need one!

 OR unexpected things happen when running.

 You may require custom code when...

 dealing with open files inside an object

 The class manually allocated memory

 Hardware resources (a serial port) opened inside an object

 Etc.

Rectangle rT_1(1.0,2.0) ;

// Now use the copy constructor

Rectangle rT_2(rT_1) ;

// Do an assignment, with the

// default assignment operator

rT_2 = rT_1 ;

Templates and classes

 Classes can also be created via templates in C++

 Templates can be used for type definitions with:
 Entire class definitions

 Members of the class

 Methods of the class

 Templates can be used with class inheritance as well.

 This topic is way beyond the scope of this tutorial!

Tutorial Outline: Part 3

 Defining Classes

 Class inheritance

 Public, private, and protected access

 Virtual functions

Inheritance

 Inheritance is the ability to form a

hierarchy of classes where they

share common members and

methods.
 Helps with: code re-use, consistent

programming, program organization

 This is a powerful concept!

Molecule

Inorganic

Mineral

Organic

Protein

Inheritance
 The class being derived from is referred

to as the base, parent, or super class.

 The class being derived is the derived,

child, or sub class.

 For consistency, we’ll use superclass

and subclass in this tutorial. A base class

is the one at the top of the hierarchy.

Molecule

Inorganic

Mineral

Organic

Protein

Superclass

Subclass

Base Class

Inheritance in Action

 Streams in C++ are series of characters

– the C+ I/O system is based on this

concept.

 cout is an object of the class ostream. It

is a write-only series of characters that

prints to the terminal.

 There are two subclasses of ostream:

 ofstream – write characters to a file

 ostringstream – write characters to a string

 Writing to the terminal is straightforward:

cout << some_variable ;

 How might an object of class ofstream or

ostringstream be used if we want to write

characters to a file or to a string?

Inheritance in Action

 For ofstream and ofstringstream the << operator is inherited from ostream

and behaves the same way for each from the programmer’s point of view.

 The ofstream class adds a constructor to open a file and a close() method.

 ofstringstream adds a method to retrieve the underlying string, str()

 If you wanted a class to write to something else, like a USB port…
 Maybe look into inheriting from ostream!

 Or its underlying class, basic_ostream which handles types other than characters…

Inheritance in Action

#include <iostream> // cout

#include <fstream> // ofstream

#include <sstream> // ostringstream

using namespace std ;

void some_func(string msg) {

cout << msg ; // to the terminal

// The constructor opens a file for writing

ofstream my_file("filename.txt") ;

// Write to the file.

my_file << msg ;

// close the file.

my_file.close() ;

ostringstream oss ;

// Write to the stringstream

oss << msg ;

// Get the string from stringstream

cout << oss.str() ;

}

Tutorial Outline: Part 3

 Defining Classes

 Class inheritance

 Public, private, and protected access

 Virtual functions

Public, protected, private

 Public and private were added by

NetBeans to the Rectangle class.

 These are used to control access

to parts of the class with

inheritance.

class Rectangle

{

public:

Rectangle();

Rectangle(float width, float length) ;

virtual ~Rectangle();

float m_width ;

float m_length ;

float Area() ;

protected:

private:

};

“There are only two things wrong with C++: The initial concept

and the implementation.”

– Bertrand Meyer (inventor of the Eiffel OOP language)

C++ Access Control and Inheritance

Access public protected private

Same class Yes Yes Yes

Subclass Yes Yes No

Outside classes Yes No No

Sub myobj ;

Myobj.i = 10 ; // public - ok

Myobj.j = 3 ; // protected - Compiler error

Myobj.k = 1 ; // private - Compiler error

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// in methods, could access

// i and j from Parent only.

};

Inheritance

Outside code

Inheritance

 With inheritance subclasses have access

to private and protected members and

methods all the way back to the base

class.

 Each subclass can still define its own

public, protected, and private members

and methods along the way.

class A

public

protected

private

class B : public A

public

protected

private

public A

protected A

class C : public B

public A

protected A

public

protected

public B

protected B

private

Single vs Multiple Inheritance

 C++ supports creating relationships where a subclass

inherits data members and methods from a single

superclass: single inheritance

 C++ also support inheriting from multiple classes

simultaneously: Multiple inheritance

 This tutorial will only cover single inheritance.

 Generally speaking…

 Multiple inheritance requires a large amount of design effort

 It’s an easy way to end up with overly complex, fragile code

 Java and C# (both came after C++) exclude multiple

inheritance on purpose to avoid problems with it.

 With multiple inheritance a hierarchy like

this is possible to create…this is

nicknamed the Deadly Diamond of

Death.

D

B C

A

C++ Inheritance Syntax

 Inheritance syntax pattern:
class SubclassName : public SuperclassName

 Here the public keyword is used.
 Methods implemented in class Sub can access any public or

protected members and methods in Super but cannot access

anything that is private.

 Other inheritance types are protected and private.

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// ...

};

Square

 Let’s make a subclass of Rectangle called Square.

 Open the NetBeans project Shapes

 This has the Rectangle class from Part 2 implemented.

 Add a class named Square.

 Make it inherit from Rectangle.

 Class Square inherits from class Rectangle

Square.h Square.cpp

#ifndef SQUARE_H

#define SQUARE_H

#include "Rectangle.h"

class Square : public Rectangle

{

public:

Square();

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include “Square.h"

Square::Square()

{}

Square::~Square()

{}

 Note that subclasses are free to add any number

of new methods or members, they are not limited

to those in the superclass.

A new Square constructor is needed.

 A square is, of course, just a rectangle with equal length and width.

 The area can be calculated the same way as a rectangle.

 Our Square class therefore needs just one value to initialize it and it can

re-use the Rectangle.Area() method for its area.

 Go ahead and try it:

 Add an argument to the default constructor in Square.h

 Update the constructor in Square.cpp to do…?

 Remember Square can access the public members and methods in its superclass

Solution 1

 Square can access the public members in its superclass.

 Its constructor can then just assign the length of the side to the

Rectangle m_width and m_length.

 This is unsatisfying – while there is nothing wrong with this it’s

not the OOP way to do things.

 Why re-code the perfectly good constructor in Rectangle?

#ifndef SQUARE_H

#define SQUARE_H

#include “Rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include “Square.h"

Square::Square(float length):

m_width (length), m_length(length)

{

}

The delegating constructor

 C++11 added a new constructor type

called the delegating constructor.

 Using member initialization lists you can

call one constructor from another.

 Even better: with member initialization

lists C++ can call superclass

constructors!

Square::Square(float length) :

Rectangle(length,length)

{

// other code could go here.

}

class class_c {

public:

int max;

int min;

int middle;

class_c(int my_max) {

max = my_max > 0 ? my_max : 10;

}

class_c(int my_max, int my_min) : class_c(my_max) {

min = my_min > 0 && my_min < max ? my_min : 1;

}

class_c(int my_max, int my_min, int my_middle) :

class_c (my_max, my_min){

middle = my_middle < max &&

my_middle > min ? my_middle : 5;

}

};

Reference:
https://msdn.microsoft.com/en-us/library/dn387583.aspx

Solution 2

 Square can directly call its superclass constructor and let the

Rectangle constructor make the assignment to m_width and

m_length.

 This saves typing, time, and reduces the chance of adding

bugs to your code.

 The more complex your code, the more compelling this statement

is.

 Code re-use is one of the prime reasons to use OOP.

#ifndef SQUARE_H

#define SQUARE_H

#include "Rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "Square.h"

Square::Square(float length) :

Rectangle(length, length) {}

Trying it out in main()

 What happens behind the scenes

when this is compiled….

#include <iostream>

using namespace std;

#include “Square.h"

int main()

{

Square sQ(4) ;

// Uses the Rectangle Area() method!

cout << sQ.Area() << endl ;

return 0;

}

sQ.Area()

Square class
does not

implement Area()
so compiler looks

to superclass

Finds Area() in
Rectangle class.

Inserts call to
Rectangle.Area()

method in
compiled code.

More on Destructors
 When a subclass object is

removed from memory, its

destructor is called as it is for any

object.

 Its superclass destructor is than

also called .

 Each subclass should only clean

up its own problems and let

superclasses clean up theirs.

Square object is
removed from

memory

~Square() is called

~Rectangle() is
called

