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Introduction

 Many programs can perform simultaneous operations, given multiple 

processors to perform the work.

 Generally speaking the burden of managing this lies on the programmer.
 Either directly by implementing parallel code

 Or indirectly by using libraries that perform parallel calculations.

 First, let’s look at an example of some problems that could be solved with 

parallel computations.



Limits (“bounds”) on Program Speed

 Input/Output (I/O): The rate at which data can be read from a disk, a 

network file server, a remote server, a sensor, a user’s physical inputs, 

etc. limits the performance of the program.

 Memory: The quantity of memory on the system limits performance. 
 Example: computer has 16 GB of RAM, data file is 64 GB in size.

 CPU (or compute): The speed of the processor is the limit on 

performance.



Why Parallelize?

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


Example 1: Buoy data

 Each row is the water temperature in 

Celcius at a depth of 2m from different 

ocean buoys off of the coast of New 

England.

 We want to find the average daily 

temperature across all the buoys.
 i.e. sum them all vertically and divide by 5.

 How can we parallelize this?

time



Example 2: Buoy data

 Now consider the temperatures 

from 1 buoy. This is daily data.  

How can we smooth the data by 

30 days?

 Smoothing:
 Pick 30 days worth of data points starting at day 

0. Average them and assign that value to a new 

array at day 0.

 Pick another 30 days of data starting from day 

1.  Assign that average value to day 1.

 Etc.

 How can we parallelize this?



Example 3: k-mer counting

 k-mers are repeated sets of nucleotides in genomic sequences.  k is the 

length of the set.  

 AGTCCC 
 Split into k-mers of length 3:  AGT, GTC, TCC, CCC

 A common problem in genomics is creating a histogram of all possible k-

mers from a data file.

AGTCCCCGTCTTGCCGCGCGGGGGCGGGCGCGGGAAAAAAGCCGCGCGGGGGCGC

CCGCGGGAAGGCAGCCCCGCGGCGCGCGGGGGGAGGGGCGGCGCCCGCGGGGGAG

CGGCCGGCTCCGGGGGAGGGACGGGGAAGGGGGCGCGCGGGGCTGCCCTGCCGCC

CGCCCGCCGCCGCCGCCCGCCTTCGCGCCCCCCCCCAAAAAACACCCCCCCCGGA

…imagine this in a file a few dozen GB in size…



Example 3: k-mer counting

 Tasks:
 Read each line from the file. The file is compressed to save disk space.

 In each line, find all possible k-mers for a fixed value k. 

 Store all k-mers that are found and how often they occurred.

 Repeat for the next line.

 The output is the histogram for the whole file:

3-mer Occurrences

AGT 203

GTC 123

TCC 583

CCC 875

…etc…

How can we split this up 

into parallel 

computations?

Which steps can 

happen concurrently?
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Basics of Parallelization

 Certain patterns of program execution lend them selves to specific 

parallelization solutions.

 Recognizing these patterns in your code will help you choose which 

Python parallelization approach to use.

 The solutions are strategies – it’s up to you to adapt them to your specific 

program.

 Here’s a few examples.  There are lots more than we have time for here!



Embarrassingly Parallel

 Take a list of numbers:

 And calculate its sum:

 This can easily be computed in 

parallel. Break into 2 chunks, 

sum them, and sum the chunks:
 Or break it down into even smaller 

computaitons.

1 2 3 4 5 6 7 8 9 10

1+2+3+4+5+6+7+8+9+10

1+2+3+4+5 6+7+8+9+10+



Embarassingly Parallel

 Completely independent steps.

 Ex.: multiple runs of a simulation, processing multiple data files with the 

same script, calling 1 function over every element of an array.

Many 
files

python 
script.py

Output 
files

Input file 
1

Input file 
2

Input file 
3

python 
script.py

Output 
file 1

python 
script.py

python 
script.py

Output 
file 1

Output 
file 1

Run 

simultaneously 

on separate 

cores



Embarassingly Parallel

 Each iteration of a for loop might be completely independent of each 

other.

x = [1,2,3,4,5]

% Each loop iteration has no dependence

% on any other loop iteration.

for i = 1:5

x(i) = some_func(x(i))



Divide & Conquer

 A problem can be broken into sub-problems that are solved 

independently.  

Problem

Sub-problem 1 Sub-problem 2

Sub-problem 3 Sub-problem 3

Solution

split

split

Merge/reduce

Example: the famous 

MapReduce algorithm.

Sub-problems 1 

and 2 can be 

executed in 

parallel.

Or both 3’s with 2.

https://en.wikipedia.org/wiki/MapReduce


Pipeline

 Steps in a pipeline must run sequentially. 

 These stages could be internal functions in a program.

Each stage executes 

in parallel.

Input 
data stage 1

stage 2

stage 3

stage 4

output 
data

stage 1

stage 2

stage 3

stage 4

Time

Chunks of input data



Geometric

 The problem can be broken up into predictable patterns.

 Example: blurring an image – the image can be broken into overlapping 

tiles processed in parallel.



 Different parts of a program may use different parallel strategies during 

execution.  

https://en.wikipedia.org/wiki/OpenMP
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Hardware for Parallel Computation

 Parallel computing is used on systems of all sizes, from 

your smartphone to clusters with thousands of processors.

Lenovo ThinkSystem HPC cluster

iPhone motherboard



CPUs and cores

 In the beginning...a CPU plugged into a 

socket in the computer. 
 The term “core” wasn’t in use but we’d call this a 1-core 

CPU today.

 Multiple CPU computers had multiple CPU sockets.

 In 2001 IBM introduced their POWER4 CPU 

which embedded 2 “cores” into one physical 

CPU package.
 The two cores are manufactured on the same physical 

semiconductor die.

 1 socket

AMD K5 in a Socket 7 (1996)

POWER4 circuit view

core
core



Modern configurations

 Quad Intel Xeon CPUs

 Up to 28 cores per CPU

 Dual AMD Epyc CPUs

 Up to 64 cores per CPU

 Single Intel CPU

 4 cores (Core-i3, ~$100)

 For PC and server hardware the high 

end has very high core counts.

 Entry-level systems still have multiple 

cores.

 Parallel capabilities are everywhere 

these days.



CPUs and cores

 “CPU” typically refers today to the physical packaging of multiple cores.

 CPU, processor, and core are sometimes used interchangeably to mean 

“core”.

1 CPU, 1 core

1 program at a time

1 CPU, 2 cores

2 programs simultaneously

1 CPU, 16 cores

16 programs simultaneously



Hyperthreading (Intel trademark)
“Logical Cores” or “hardware threads”

 CPUs with this feature have some additional 

hardware that lets a program have its execution 

state pre-loaded onto a core while another program 

is actually executing on that core.
 The hardware allows the OS to switch the physical core to run the 

other program very quickly.

 For many sets of programs (especially I/O bound) 

this makes better use of the physical core.

Real physical core

Logical cores

Progam A Progam B

 Intel claims overall 

system 

performance can 

be 30% better.

https://software.intel.com/content/www/us/en/develop/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application.html


 For regular CPUs the program switching is slower.

 For parallel CPU or compute bound programs the “extra cores” are of no 

benefit and typically degrade overall system performance.

 Hyperthreading or logical cores does not double the computational resources.

Real physical core

Logical cores

Progam A Progam B

Progam A

Progam B

Off in main memory

Prog A is executing

No logical cores



Hyperthreaded Intel i5-9300h CPU

 A linear algebra matrix-matrix 

multiply.

 4 real cores, 4 logical cores.

 Note performance increases stop 

for cores > 4.

 CPU-bound programs can only 

take advantage of real cores.



Count Your Cores

 Operating system utilities are the easiest 

way.

 Windows Task Manager

 Linux command: lscpu

 Mac OSX:
[~] sysctl -n hw.logicalcpu

8

[~] sysctl -n hw.physicalcpu

4



Final Comments

 On your personal or lab computers, check to see if logical cores 

are present.  

 If so, beware of using all of them for a parallel computation.

 It’s best to use just the physical cores if CPU-bound.

 On the SCC any compute node that supports logical cores has 

this feature disabled.

 All SCC core counts are real physical cores. 
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Types of Parallelization

 On the SCC: queue parallelization.
 You have N files to process.  Submit N jobs.

 Or, one job array that launches N jobs.

 This often requires little to no changes to your code…

 Parallel Libraries
 Use a library that internally implements some kind of parallelization.

 Multiple Processes
 Your program launches several copies of itself (or other programs) to solve the computational 

problem.

 On one computer or many.

 Multiple Threads
 Your program creates threads, which are parts of the same program that can execute 

independently of each other.

https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#array


Process

 A program running on a 

computer.

 Processes can start other 

processes.

 Properties:
 A private (non-shared) memory space

 A process ID

 Can exchange data with other 

processes via files, pipes, network 

connections, system shared memory, 

etc.

https://en.wikipedia.org/wiki/Process_(computing)

 The operating system schedules the 

process so that it shares computational 

time with other processes.

https://en.wikipedia.org/wiki/Process_(computing)


Process Scheduling by Analogy

 Consider this 4-burner stove.

 There are 17 pots of soup to cook.  

 Some must be kept very hot (lots of 

time on a burner)

 The chef swaps pots frequently to 

share the burners as fairly as 

possible.



Process Scheduling by Analogy

 Consider this 4-burner stove.

 There are 17 pots of soup to cook.  

 Some must be kept very hot (lots of 

time on a burner)

 The chef swaps pots frequently to 

share the burners as fairly as 

possible.

 Consider a 4-core CPU

 There are 17 processes to run

 Some require a lot of CPU time

 The OS swaps processes on and 

off the cores to share computation 

time as fairly as possible.



Threads

 Python running threads on 22 cores.

 In the top program 100% of CPU means 1 core 

is 100% busy.

 2186% means 22 cores are busy.

https://en.wikipedia.org/wiki/Light-weight_process

 A part of a process that can be 

scheduled to run independently of the 

rest of the process.

 Are created, run, and destroyed by a 

process.

 Properties:
 Shares memory with each other and the original 

process.

 Does not have a separate process ID.

 Can exchange data with other threads or with 

other processes.

 The cooking analogy equivalent would be a 

large pot that covered several burners.

https://en.wikipedia.org/wiki/Light-weight_process


Monitoring with 

the top tool

 On the SCC, use top

 To see your processes only:    top -u username

 100% of CPU means 1 core is 100% occupied. 

 200% means 2 cores are used, etc.

 The RES column is the amount of RAM actively in use by the process.

 VIRT is the virtual memory – essentially the maximum amount of RAM the process might 

request.



Parallelize with Processes or Threads?

 You can add parallelism to your program through changing your source 

code or by calling libraries that implement parallel algorithms.

 Process-based parallelism:
 Keeps memory separated.

 Can potentially run on multiple computers and communicate via a network.

 Avoids issues with non-thread-safe code.

 Thread-based: 
 All the program memory is accessible by all threads.  

 Higher performance intra-thread communication compared with processes.

 More complicated parallelization patterns can be implemented.

 Easy to start & stop threads.
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Common Parallel Libraries
Library Parallelization Notes

Python multiprocessing Processes Standard language library.

Matlab parpool

Implicit parallelism

Processes

Threads

Standard language library.

Some operations will automatically multi-thread.

R parallel

foreach

Threads

Processes

Standard language libaries.

BLAS

(SCC: blis or openblas modules)

Threads Linear algebra.  Widely used, for example by R and 

Python (via the numpy library).

Intel Math Kernel Library (MKL) Threads Linear algebra and a lot more. Widely used.

FFTW Threads Fast Fourier Transforms.

OpenCV Threads Image processing.

Tensorflow Threads Machine learning.

PETSc Processes and threads Partial differential equation solver, multi-compute node.

Hadoop and Spark Processes and threads Multi-compute node, includes a parallel file system.

MPI Processes Low-level library for multi-node communication.

OpenMP Threads Low-level library (C/C++/Fortran) for multi-threading.



Example: BLAS

 The Basic Linear Algebra Subprograms library 

provides a variety of functions for linear 

algebra type calculations.

 This underlies a staggering number of 

algorithms and computations in every area of 

computing.

 High performance threaded BLAS libraries 

continue to be an active area of computer 

science research.
 SCC benchmark.

 Note poor performance of default 

Linux system BLAS library!



Enable OpenMP Threading Libraries on the SCC

 Most software on the SCC that uses multiple 

cores are built with the OpenMP threading 

library.
 Including BLAS routines as commonly used by R and Python.

 The number of threads that will be used by your 

program can be set using the environment 

variable OMP_NUM_THREADS
 If a program uses the Intel MKL library the threads can be set 

with MKL_NUM_THREADS instead

 The SCC sets OMP_NUM_THREADS=1 by 

default.

 NEVER request more threads than there are 

cores for the job.

#$/bin/bash -l

# Request 8 cores for this job

# The queue will set the variable

# NSLOTS to 8

#$ -pe omp 8

# We know a priori that this 

multithreads

# with OpenMP

module load nobel_winner/1.0

# Allow for OpenMP threading.

export OMP_NUM_THREADS=$NSLOTS

# Using NSLOTS means we will never ask

# for more threads than cores.

# Now run the program...is it faster?

nobel_winner ...etc...



Enable OpenMP on non-SCC computers

 Environment variables can be set in various ways on different operating 

systems. Here is a guide for Windows, Linux, and Mac OSX.

 The OpenMP library looks for OMP_NUM_THREADS regardless of the 

operating system.

 Mac users:  the BLAS library used by R, Python, etc. is likely to be the 

Apple Accelerate library.  In that case try setting the variable 

VECLIB_MAXIMUM_THREADS.

https://www.schrodinger.com/kb/1842


Know your software

 OpenMP is hardly the last word in multithreading.

 Different software may have different mechanisms for enabling threaded or 

multiprocess calculations such as configuration options or command line flags.

 Read the documentation!



The Message Passing Interface (MPI)

 With the right software tools processes can be run on multiple computers 

simultaneously and communicate with each other across a network.

 The MPI library is the most successful system for this in high performance 

computing.  
 On the SCC we standardized on the OpenMPI implementation:  module avail openmpi

 Used on the world’s largest clusters with thousands of cores over 

hundreds of compute nodes for single programs.

https://www.open-mpi.org/


MPI 

 Since MPI uses separate 

processes, the programmer has 

to decide how and when data is 

shared between them.

 MPI provides routines for 

communication, parallel file I/O, 

gathering and reducing data from 

processes, and many more.  



Using MPI in your software

 OpenMPI libraries are typically available for C, C++, Fortran, and Java.

 Wrappers libraries for MPI are readily available. These will typically work 

with whichever MPI implementation is available
 OpenMPI, MVAPICH, Intel MPI, etc.

 MPI programming is an advanced programming skill.  RCS is happy to 

help – email us!

Language Library

Python mpi4py

R Rmpi

Julia MPI.jl

C# MPI.NET



mpirun

 MPI programs have a special program to 

launch them, mpirun

 OpenMPI’s mpirun has many options that 

control how MPI processes are started 

and where they run.

 Try module help modulename on the SCC

for MPI-based modules

 On the SCC the configuration of compute 

nodes for mpirun is handled by the 

queue.

3 compute nodes, 4 cores each.

mpirun -np 12 my_mpi_prog

1 MPI process per compute node will run.

MPI process

mpirun -np 3 my_mpi_prog

3 MPI processes will run…all on node 0.

mpirun -np 3 --map-by node my_mpi_prog

3 MPI processes will run, one per node

export OMP_NUM_THREADS=4

mpirun -np 3 –-map-by node my_mpi_prog

3 MPI processes will run, one per node, with 4 threads

MPI process with 

1 OpenMP thread

OpenMP thread



SCC MPI Nodes

 Request MPI-specific nodes on 

the SCC with the qsub option:
 -pe mpi_16_tasks_per_node N

 Where N is a multiple of 16

 N=48  4 16-core nodes

 NSLOTS  48

 -pe mpi_28_tasks_per_node M

 Where M is a multiple of 28

 The only way to use multiple 

compute nodes for a job on the 

SCC is to use the MPI queues.

Network Type Bandwidth (Gbit/sec) Latency (ms)

10gig Ethernet 10  12.5

FDR Infiniband 13.64 0.7

EDR Infiniband 25 0.5

 These jobs run on dedicated compute 

nodes connected with an Infiniband

network.  There are a couple of versions 

on the SCC.

 Latency is how quickly a data transfer can 

be initiated.  For MPI computations this is 

often the limit, not the bandwidth.

 MPI jobs on a single compute node should 

use the regular “-pe omp N” queues.

https://en.wikipedia.org/wiki/InfiniBand


Parallel Speedup

 There are many ways to parallelize code.

 …is it worth the effort and how much will it benefit you?



Amdahl’s Law

 The speedup ratio S is the 

ratio of time between the 

serial code (T1) and the time 

when using N workers (TN):

𝑆 =
𝑇1
𝑇𝑁

=
𝑇1

𝑓 +
1 − 𝑓
𝑁

𝑇1

N = number of threads or 

processes

f = fraction of program that 

is serial

 This is the theoretical best speedup 

achievable with parallelization.

Figure from Wikipedia.

https://en.wikipedia.org/wiki/Parallel_computing


Intel Xeon CPU E5-2650 v2 @ 2.60GHz.  16 physical cores, 2 sockets (scc-pi2)

 For small matrix sizes, using any number 

of threads >1 is slower.

 Thread coordination takes longer than the 

parallel speedup.

 Larger matrices have diminishing returns 

for higher numbers of threads.

 For any given code you’ll likely find a 

range above which more threads doesn’t 

help.

 You have to test…test…and test some more!

 SCC suggestion – try 4 threads/cores.

1 -



AMD EPYC 7702 CPU  @2 GHz.  64 physical cores, 1 socket 

 Running on a 64-core system the 

computation actually gets slower with too 

many threads.

 It may be that some parts of your code 

benefit from more threads than others –

try to pick a sensible number.

 The ideal thread number may change if 

you change the CPU manufacturer, CPU 

model, BLAS library, and so on.
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Parallelization Difficulties

 Some code cannot be parallelized – it 

must be computed in order.

 Some loops or function calls can have 

dependencies on other loop iterations 

that make it impossible to parallelize.

 Sometimes you can alter a loop with 

additional copies of data to make it 

parallelize.
 Trading off memory usage for computation time.

 Choose your battles wisely

 Use profiling to identify code 

that is worth improving.

x = np.random.random([100])

# This cannot be parallelized.

for i in range(1,x.shape[0]-1):

x[i] = x[i] - x[i-1] + x[i+1]



Parallelization Difficulties

 Random number generation is not 

straightforward.  

 Computing RNG’s in parallel requires 

different random seeds for each worker.

 Do not assume that different workers, if 

seeded by default or from the system 

clock, will be generating different 

sequences of RNGs.



Parallelization Difficulties

 Be careful about the amount of I/O your 

workers are performing.

 Disks, networks, etc. have bandwidth 

limits.

 Excess workers can overload resources, 

turning the problem from CPU-bound to 

I/O bound.



How Many Workers*?

 I/O-bound programs may run 

hundreds or thousands of workers
 These spend a lot of time waiting for data 

from the network, the disk, the user, etc.

 CPU-bound programs should run 

one worker per physical core.

 Memory-bound programs often use 

fewer workers than cores.

* Worker: thread or sub-process of a program

Apache web server

….

Hundreds of copies of itself handle incoming web traffic

LAMMPS
molecular dynamics code

4 cores – 4 workers



What happens with too many workers?

 For CPU-bound problems, use no more than 1 worker per core.

 More than 1 results in workers competing with each other for access to 

the cores and memory bandwidth.

 Performance will suffer significantly with excess workers.

 Watch for mixing multiple processes and multithreading (like OpenMP): 

each process can end up launching many threads, overloading the cores!


