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Introduction

 Many programs can perform simultaneous operations, given multiple 

processors to perform the work.

 Generally speaking the burden of managing this lies on the programmer.
 Either directly by implementing parallel code

 Or indirectly by using libraries that perform parallel calculations.

 First, let’s look at an example of some problems that could be solved with 

parallel computations.



Limits (“bounds”) on Program Speed

 Input/Output (I/O): The rate at which data can be read from a disk, a 

network file server, a remote server, a sensor, a user’s physical inputs, 

etc. limits the performance of the program.

 Memory: The quantity of memory on the system limits performance. 
 Example: computer has 16 GB of RAM, data file is 64 GB in size.

 CPU (or compute): The speed of the processor is the limit on 

performance.



Why Parallelize?

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


Example 1: Buoy data

 Each row is the water temperature in 

Celcius at a depth of 2m from different 

ocean buoys off of the coast of New 

England.

 We want to find the average daily 

temperature across all the buoys.
 i.e. sum them all vertically and divide by 5.

 How can we parallelize this?

time



Example 2: Buoy data

 Now consider the temperatures 

from 1 buoy. This is daily data.  

How can we smooth the data by 

30 days?

 Smoothing:
 Pick 30 days worth of data points starting at day 

0. Average them and assign that value to a new 

array at day 0.

 Pick another 30 days of data starting from day 

1.  Assign that average value to day 1.

 Etc.

 How can we parallelize this?



Example 3: k-mer counting

 k-mers are repeated sets of nucleotides in genomic sequences.  k is the 

length of the set.  

 AGTCCC 
 Split into k-mers of length 3:  AGT, GTC, TCC, CCC

 A common problem in genomics is creating a histogram of all possible k-

mers from a data file.

AGTCCCCGTCTTGCCGCGCGGGGGCGGGCGCGGGAAAAAAGCCGCGCGGGGGCGC

CCGCGGGAAGGCAGCCCCGCGGCGCGCGGGGGGAGGGGCGGCGCCCGCGGGGGAG

CGGCCGGCTCCGGGGGAGGGACGGGGAAGGGGGCGCGCGGGGCTGCCCTGCCGCC

CGCCCGCCGCCGCCGCCCGCCTTCGCGCCCCCCCCCAAAAAACACCCCCCCCGGA

…imagine this in a file a few dozen GB in size…



Example 3: k-mer counting

 Tasks:
 Read each line from the file. The file is compressed to save disk space.

 In each line, find all possible k-mers for a fixed value k. 

 Store all k-mers that are found and how often they occurred.

 Repeat for the next line.

 The output is the histogram for the whole file:

3-mer Occurrences

AGT 203

GTC 123

TCC 583

CCC 875

…etc…

How can we split this up 

into parallel 

computations?

Which steps can 

happen concurrently?
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Basics of Parallelization

 Certain patterns of program execution lend them selves to specific 

parallelization solutions.

 Recognizing these patterns in your code will help you choose which 

Python parallelization approach to use.

 The solutions are strategies – it’s up to you to adapt them to your specific 

program.

 Here’s a few examples.  There are lots more than we have time for here!



Embarrassingly Parallel

 Take a list of numbers:

 And calculate its sum:

 This can easily be computed in 

parallel. Break into 2 chunks, 

sum them, and sum the chunks:
 Or break it down into even smaller 

computaitons.

1 2 3 4 5 6 7 8 9 10

1+2+3+4+5+6+7+8+9+10

1+2+3+4+5 6+7+8+9+10+



Embarassingly Parallel

 Completely independent steps.

 Ex.: multiple runs of a simulation, processing multiple data files with the 

same script, calling 1 function over every element of an array.

Many 
files

python 
script.py

Output 
files

Input file 
1

Input file 
2

Input file 
3

python 
script.py

Output 
file 1

python 
script.py

python 
script.py

Output 
file 1

Output 
file 1

Run 

simultaneously 

on separate 

cores



Embarassingly Parallel

 Each iteration of a for loop might be completely independent of each 

other.

x = [1,2,3,4,5]

% Each loop iteration has no dependence

% on any other loop iteration.

for i = 1:5

x(i) = some_func(x(i))



Divide & Conquer

 A problem can be broken into sub-problems that are solved 

independently.  

Problem

Sub-problem 1 Sub-problem 2

Sub-problem 3 Sub-problem 3

Solution

split

split

Merge/reduce

Example: the famous 

MapReduce algorithm.

Sub-problems 1 

and 2 can be 

executed in 

parallel.

Or both 3’s with 2.

https://en.wikipedia.org/wiki/MapReduce


Pipeline

 Steps in a pipeline must run sequentially. 

 These stages could be internal functions in a program.

Each stage executes 

in parallel.

Input 
data stage 1

stage 2

stage 3

stage 4

output 
data

stage 1

stage 2

stage 3

stage 4

Time

Chunks of input data



Geometric

 The problem can be broken up into predictable patterns.

 Example: blurring an image – the image can be broken into overlapping 

tiles processed in parallel.



 Different parts of a program may use different parallel strategies during 

execution.  

https://en.wikipedia.org/wiki/OpenMP



Outline

 Parallel Examples

 Parallel Strategies

 Hardware 

 Processes and threads

 Libraries & your own code

 Parallelization pitfalls



Hardware for Parallel Computation

 Parallel computing is used on systems of all sizes, from 

your smartphone to clusters with thousands of processors.

Lenovo ThinkSystem HPC cluster

iPhone motherboard



CPUs and cores

 In the beginning...a CPU plugged into a 

socket in the computer. 
 The term “core” wasn’t in use but we’d call this a 1-core 

CPU today.

 Multiple CPU computers had multiple CPU sockets.

 In 2001 IBM introduced their POWER4 CPU 

which embedded 2 “cores” into one physical 

CPU package.
 The two cores are manufactured on the same physical 

semiconductor die.

 1 socket

AMD K5 in a Socket 7 (1996)

POWER4 circuit view

core
core



Modern configurations

 Quad Intel Xeon CPUs

 Up to 28 cores per CPU

 Dual AMD Epyc CPUs

 Up to 64 cores per CPU

 Single Intel CPU

 4 cores (Core-i3, ~$100)

 For PC and server hardware the high 

end has very high core counts.

 Entry-level systems still have multiple 

cores.

 Parallel capabilities are everywhere 

these days.



CPUs and cores

 “CPU” typically refers today to the physical packaging of multiple cores.

 CPU, processor, and core are sometimes used interchangeably to mean 

“core”.

1 CPU, 1 core

1 program at a time

1 CPU, 2 cores

2 programs simultaneously

1 CPU, 16 cores

16 programs simultaneously



Hyperthreading (Intel trademark)
“Logical Cores” or “hardware threads”

 CPUs with this feature have some additional 

hardware that lets a program have its execution 

state pre-loaded onto a core while another program 

is actually executing on that core.
 The hardware allows the OS to switch the physical core to run the 

other program very quickly.

 For many sets of programs (especially I/O bound) 

this makes better use of the physical core.

Real physical core

Logical cores

Progam A Progam B

 Intel claims overall 

system 

performance can 

be 30% better.

https://software.intel.com/content/www/us/en/develop/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application.html


 For regular CPUs the program switching is slower.

 For parallel CPU or compute bound programs the “extra cores” are of no 

benefit and typically degrade overall system performance.

 Hyperthreading or logical cores does not double the computational resources.

Real physical core

Logical cores

Progam A Progam B

Progam A

Progam B

Off in main memory

Prog A is executing

No logical cores



Hyperthreaded Intel i5-9300h CPU

 A linear algebra matrix-matrix 

multiply.

 4 real cores, 4 logical cores.

 Note performance increases stop 

for cores > 4.

 CPU-bound programs can only 

take advantage of real cores.



Count Your Cores

 Operating system utilities are the easiest 

way.

 Windows Task Manager

 Linux command: lscpu

 Mac OSX:
[~] sysctl -n hw.logicalcpu

8

[~] sysctl -n hw.physicalcpu

4



Final Comments

 On your personal or lab computers, check to see if logical cores 

are present.  

 If so, beware of using all of them for a parallel computation.

 It’s best to use just the physical cores if CPU-bound.

 On the SCC any compute node that supports logical cores has 

this feature disabled.

 All SCC core counts are real physical cores. 
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Types of Parallelization

 On the SCC: queue parallelization.
 You have N files to process.  Submit N jobs.

 Or, one job array that launches N jobs.

 This often requires little to no changes to your code…

 Parallel Libraries
 Use a library that internally implements some kind of parallelization.

 Multiple Processes
 Your program launches several copies of itself (or other programs) to solve the computational 

problem.

 On one computer or many.

 Multiple Threads
 Your program creates threads, which are parts of the same program that can execute 

independently of each other.

https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#array


Process

 A program running on a 

computer.

 Processes can start other 

processes.

 Properties:
 A private (non-shared) memory space

 A process ID

 Can exchange data with other 

processes via files, pipes, network 

connections, system shared memory, 

etc.

https://en.wikipedia.org/wiki/Process_(computing)

 The operating system schedules the 

process so that it shares computational 

time with other processes.

https://en.wikipedia.org/wiki/Process_(computing)


Process Scheduling by Analogy

 Consider this 4-burner stove.

 There are 17 pots of soup to cook.  

 Some must be kept very hot (lots of 

time on a burner)

 The chef swaps pots frequently to 

share the burners as fairly as 

possible.



Process Scheduling by Analogy

 Consider this 4-burner stove.

 There are 17 pots of soup to cook.  

 Some must be kept very hot (lots of 

time on a burner)

 The chef swaps pots frequently to 

share the burners as fairly as 

possible.

 Consider a 4-core CPU

 There are 17 processes to run

 Some require a lot of CPU time

 The OS swaps processes on and 

off the cores to share computation 

time as fairly as possible.



Threads

 Python running threads on 22 cores.

 In the top program 100% of CPU means 1 core 

is 100% busy.

 2186% means 22 cores are busy.

https://en.wikipedia.org/wiki/Light-weight_process

 A part of a process that can be 

scheduled to run independently of the 

rest of the process.

 Are created, run, and destroyed by a 

process.

 Properties:
 Shares memory with each other and the original 

process.

 Does not have a separate process ID.

 Can exchange data with other threads or with 

other processes.

 The cooking analogy equivalent would be a 

large pot that covered several burners.

https://en.wikipedia.org/wiki/Light-weight_process


Monitoring with 

the top tool

 On the SCC, use top

 To see your processes only:    top -u username

 100% of CPU means 1 core is 100% occupied. 

 200% means 2 cores are used, etc.

 The RES column is the amount of RAM actively in use by the process.

 VIRT is the virtual memory – essentially the maximum amount of RAM the process might 

request.



Parallelize with Processes or Threads?

 You can add parallelism to your program through changing your source 

code or by calling libraries that implement parallel algorithms.

 Process-based parallelism:
 Keeps memory separated.

 Can potentially run on multiple computers and communicate via a network.

 Avoids issues with non-thread-safe code.

 Thread-based: 
 All the program memory is accessible by all threads.  

 Higher performance intra-thread communication compared with processes.

 More complicated parallelization patterns can be implemented.

 Easy to start & stop threads.
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Common Parallel Libraries
Library Parallelization Notes

Python multiprocessing Processes Standard language library.

Matlab parpool

Implicit parallelism

Processes

Threads

Standard language library.

Some operations will automatically multi-thread.

R parallel

foreach

Threads

Processes

Standard language libaries.

BLAS

(SCC: blis or openblas modules)

Threads Linear algebra.  Widely used, for example by R and 

Python (via the numpy library).

Intel Math Kernel Library (MKL) Threads Linear algebra and a lot more. Widely used.

FFTW Threads Fast Fourier Transforms.

OpenCV Threads Image processing.

Tensorflow Threads Machine learning.

PETSc Processes and threads Partial differential equation solver, multi-compute node.

Hadoop and Spark Processes and threads Multi-compute node, includes a parallel file system.

MPI Processes Low-level library for multi-node communication.

OpenMP Threads Low-level library (C/C++/Fortran) for multi-threading.



Example: BLAS

 The Basic Linear Algebra Subprograms library 

provides a variety of functions for linear 

algebra type calculations.

 This underlies a staggering number of 

algorithms and computations in every area of 

computing.

 High performance threaded BLAS libraries 

continue to be an active area of computer 

science research.
 SCC benchmark.

 Note poor performance of default 

Linux system BLAS library!



Enable OpenMP Threading Libraries on the SCC

 Most software on the SCC that uses multiple 

cores are built with the OpenMP threading 

library.
 Including BLAS routines as commonly used by R and Python.

 The number of threads that will be used by your 

program can be set using the environment 

variable OMP_NUM_THREADS
 If a program uses the Intel MKL library the threads can be set 

with MKL_NUM_THREADS instead

 The SCC sets OMP_NUM_THREADS=1 by 

default.

 NEVER request more threads than there are 

cores for the job.

#$/bin/bash -l

# Request 8 cores for this job

# The queue will set the variable

# NSLOTS to 8

#$ -pe omp 8

# We know a priori that this 

multithreads

# with OpenMP

module load nobel_winner/1.0

# Allow for OpenMP threading.

export OMP_NUM_THREADS=$NSLOTS

# Using NSLOTS means we will never ask

# for more threads than cores.

# Now run the program...is it faster?

nobel_winner ...etc...



Enable OpenMP on non-SCC computers

 Environment variables can be set in various ways on different operating 

systems. Here is a guide for Windows, Linux, and Mac OSX.

 The OpenMP library looks for OMP_NUM_THREADS regardless of the 

operating system.

 Mac users:  the BLAS library used by R, Python, etc. is likely to be the 

Apple Accelerate library.  In that case try setting the variable 

VECLIB_MAXIMUM_THREADS.

https://www.schrodinger.com/kb/1842


Know your software

 OpenMP is hardly the last word in multithreading.

 Different software may have different mechanisms for enabling threaded or 

multiprocess calculations such as configuration options or command line flags.

 Read the documentation!



The Message Passing Interface (MPI)

 With the right software tools processes can be run on multiple computers 

simultaneously and communicate with each other across a network.

 The MPI library is the most successful system for this in high performance 

computing.  
 On the SCC we standardized on the OpenMPI implementation:  module avail openmpi

 Used on the world’s largest clusters with thousands of cores over 

hundreds of compute nodes for single programs.

https://www.open-mpi.org/


MPI 

 Since MPI uses separate 

processes, the programmer has 

to decide how and when data is 

shared between them.

 MPI provides routines for 

communication, parallel file I/O, 

gathering and reducing data from 

processes, and many more.  



Using MPI in your software

 OpenMPI libraries are typically available for C, C++, Fortran, and Java.

 Wrappers libraries for MPI are readily available. These will typically work 

with whichever MPI implementation is available
 OpenMPI, MVAPICH, Intel MPI, etc.

 MPI programming is an advanced programming skill.  RCS is happy to 

help – email us!

Language Library

Python mpi4py

R Rmpi

Julia MPI.jl

C# MPI.NET



mpirun

 MPI programs have a special program to 

launch them, mpirun

 OpenMPI’s mpirun has many options that 

control how MPI processes are started 

and where they run.

 Try module help modulename on the SCC

for MPI-based modules

 On the SCC the configuration of compute 

nodes for mpirun is handled by the 

queue.

3 compute nodes, 4 cores each.

mpirun -np 12 my_mpi_prog

1 MPI process per compute node will run.

MPI process

mpirun -np 3 my_mpi_prog

3 MPI processes will run…all on node 0.

mpirun -np 3 --map-by node my_mpi_prog

3 MPI processes will run, one per node

export OMP_NUM_THREADS=4

mpirun -np 3 –-map-by node my_mpi_prog

3 MPI processes will run, one per node, with 4 threads

MPI process with 

1 OpenMP thread

OpenMP thread



SCC MPI Nodes

 Request MPI-specific nodes on 

the SCC with the qsub option:
 -pe mpi_16_tasks_per_node N

 Where N is a multiple of 16

 N=48  4 16-core nodes

 NSLOTS  48

 -pe mpi_28_tasks_per_node M

 Where M is a multiple of 28

 The only way to use multiple 

compute nodes for a job on the 

SCC is to use the MPI queues.

Network Type Bandwidth (Gbit/sec) Latency (ms)

10gig Ethernet 10  12.5

FDR Infiniband 13.64 0.7

EDR Infiniband 25 0.5

 These jobs run on dedicated compute 

nodes connected with an Infiniband

network.  There are a couple of versions 

on the SCC.

 Latency is how quickly a data transfer can 

be initiated.  For MPI computations this is 

often the limit, not the bandwidth.

 MPI jobs on a single compute node should 

use the regular “-pe omp N” queues.

https://en.wikipedia.org/wiki/InfiniBand


Parallel Speedup

 There are many ways to parallelize code.

 …is it worth the effort and how much will it benefit you?



Amdahl’s Law

 The speedup ratio S is the 

ratio of time between the 

serial code (T1) and the time 

when using N workers (TN):

𝑆 =
𝑇1
𝑇𝑁

=
𝑇1

𝑓 +
1 − 𝑓
𝑁

𝑇1

N = number of threads or 

processes

f = fraction of program that 

is serial

 This is the theoretical best speedup 

achievable with parallelization.

Figure from Wikipedia.

https://en.wikipedia.org/wiki/Parallel_computing


Intel Xeon CPU E5-2650 v2 @ 2.60GHz.  16 physical cores, 2 sockets (scc-pi2)

 For small matrix sizes, using any number 

of threads >1 is slower.

 Thread coordination takes longer than the 

parallel speedup.

 Larger matrices have diminishing returns 

for higher numbers of threads.

 For any given code you’ll likely find a 

range above which more threads doesn’t 

help.

 You have to test…test…and test some more!

 SCC suggestion – try 4 threads/cores.

1 -



AMD EPYC 7702 CPU  @2 GHz.  64 physical cores, 1 socket 

 Running on a 64-core system the 

computation actually gets slower with too 

many threads.

 It may be that some parts of your code 

benefit from more threads than others –

try to pick a sensible number.

 The ideal thread number may change if 

you change the CPU manufacturer, CPU 

model, BLAS library, and so on.
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Parallelization Difficulties

 Some code cannot be parallelized – it 

must be computed in order.

 Some loops or function calls can have 

dependencies on other loop iterations 

that make it impossible to parallelize.

 Sometimes you can alter a loop with 

additional copies of data to make it 

parallelize.
 Trading off memory usage for computation time.

 Choose your battles wisely

 Use profiling to identify code 

that is worth improving.

x = np.random.random([100])

# This cannot be parallelized.

for i in range(1,x.shape[0]-1):

x[i] = x[i] - x[i-1] + x[i+1]



Parallelization Difficulties

 Random number generation is not 

straightforward.  

 Computing RNG’s in parallel requires 

different random seeds for each worker.

 Do not assume that different workers, if 

seeded by default or from the system 

clock, will be generating different 

sequences of RNGs.



Parallelization Difficulties

 Be careful about the amount of I/O your 

workers are performing.

 Disks, networks, etc. have bandwidth 

limits.

 Excess workers can overload resources, 

turning the problem from CPU-bound to 

I/O bound.



How Many Workers*?

 I/O-bound programs may run 

hundreds or thousands of workers
 These spend a lot of time waiting for data 

from the network, the disk, the user, etc.

 CPU-bound programs should run 

one worker per physical core.

 Memory-bound programs often use 

fewer workers than cores.

* Worker: thread or sub-process of a program

Apache web server

….

Hundreds of copies of itself handle incoming web traffic

LAMMPS
molecular dynamics code

4 cores – 4 workers



What happens with too many workers?

 For CPU-bound problems, use no more than 1 worker per core.

 More than 1 results in workers competing with each other for access to 

the cores and memory bandwidth.

 Performance will suffer significantly with excess workers.

 Watch for mixing multiple processes and multithreading (like OpenMP): 

each process can end up launching many threads, overloading the cores!


