
Introduction to Parallel Computing

0.1

Spring 2021

Research Computing Services

IS & T

Outline

 Parallel Examples

 Parallel Strategies

 Hardware

 Processes and threads

 Libraries & your own code

 Parallelization pitfalls

Introduction

 Many programs can perform simultaneous operations, given multiple

processors to perform the work.

 Generally speaking the burden of managing this lies on the programmer.
 Either directly by implementing parallel code

 Or indirectly by using libraries that perform parallel calculations.

 First, let’s look at an example of some problems that could be solved with

parallel computations.

Limits (“bounds”) on Program Speed

 Input/Output (I/O): The rate at which data can be read from a disk, a

network file server, a remote server, a sensor, a user’s physical inputs,

etc. limits the performance of the program.

 Memory: The quantity of memory on the system limits performance.
 Example: computer has 16 GB of RAM, data file is 64 GB in size.

 CPU (or compute): The speed of the processor is the limit on

performance.

Why Parallelize?

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Example 1: Buoy data

 Each row is the water temperature in

Celcius at a depth of 2m from different

ocean buoys off of the coast of New

England.

 We want to find the average daily

temperature across all the buoys.
 i.e. sum them all vertically and divide by 5.

 How can we parallelize this?

time

Example 2: Buoy data

 Now consider the temperatures

from 1 buoy. This is daily data.

How can we smooth the data by

30 days?

 Smoothing:
 Pick 30 days worth of data points starting at day

0. Average them and assign that value to a new

array at day 0.

 Pick another 30 days of data starting from day

1. Assign that average value to day 1.

 Etc.

 How can we parallelize this?

Example 3: k-mer counting

 k-mers are repeated sets of nucleotides in genomic sequences. k is the

length of the set.

 AGTCCC
 Split into k-mers of length 3: AGT, GTC, TCC, CCC

 A common problem in genomics is creating a histogram of all possible k-

mers from a data file.

AGTCCCCGTCTTGCCGCGCGGGGGCGGGCGCGGGAAAAAAGCCGCGCGGGGGCGC

CCGCGGGAAGGCAGCCCCGCGGCGCGCGGGGGGAGGGGCGGCGCCCGCGGGGGAG

CGGCCGGCTCCGGGGGAGGGACGGGGAAGGGGGCGCGCGGGGCTGCCCTGCCGCC

CGCCCGCCGCCGCCGCCCGCCTTCGCGCCCCCCCCCAAAAAACACCCCCCCCGGA

…imagine this in a file a few dozen GB in size…

Example 3: k-mer counting

 Tasks:
 Read each line from the file. The file is compressed to save disk space.

 In each line, find all possible k-mers for a fixed value k.

 Store all k-mers that are found and how often they occurred.

 Repeat for the next line.

 The output is the histogram for the whole file:

3-mer Occurrences

AGT 203

GTC 123

TCC 583

CCC 875

…etc…

How can we split this up

into parallel

computations?

Which steps can

happen concurrently?

Outline

 Parallel Examples

 Parallel Strategies

 Hardware

 Processes and threads

 Libraries & your own code

 Parallelization pitfalls

Basics of Parallelization

 Certain patterns of program execution lend them selves to specific

parallelization solutions.

 Recognizing these patterns in your code will help you choose which

Python parallelization approach to use.

 The solutions are strategies – it’s up to you to adapt them to your specific

program.

 Here’s a few examples. There are lots more than we have time for here!

Embarrassingly Parallel

 Take a list of numbers:

 And calculate its sum:

 This can easily be computed in

parallel. Break into 2 chunks,

sum them, and sum the chunks:
 Or break it down into even smaller

computaitons.

1 2 3 4 5 6 7 8 9 10

1+2+3+4+5+6+7+8+9+10

1+2+3+4+5 6+7+8+9+10+

Embarassingly Parallel

 Completely independent steps.

 Ex.: multiple runs of a simulation, processing multiple data files with the

same script, calling 1 function over every element of an array.

Many
files

python
script.py

Output
files

Input file
1

Input file
2

Input file
3

python
script.py

Output
file 1

python
script.py

python
script.py

Output
file 1

Output
file 1

Run

simultaneously

on separate

cores

Embarassingly Parallel

 Each iteration of a for loop might be completely independent of each

other.

x = [1,2,3,4,5]

% Each loop iteration has no dependence

% on any other loop iteration.

for i = 1:5

x(i) = some_func(x(i))

Divide & Conquer

 A problem can be broken into sub-problems that are solved

independently.

Problem

Sub-problem 1 Sub-problem 2

Sub-problem 3 Sub-problem 3

Solution

split

split

Merge/reduce

Example: the famous

MapReduce algorithm.

Sub-problems 1

and 2 can be

executed in

parallel.

Or both 3’s with 2.

https://en.wikipedia.org/wiki/MapReduce

Pipeline

 Steps in a pipeline must run sequentially.

 These stages could be internal functions in a program.

Each stage executes

in parallel.

Input
data stage 1

stage 2

stage 3

stage 4

output
data

stage 1

stage 2

stage 3

stage 4

Time

Chunks of input data

Geometric

 The problem can be broken up into predictable patterns.

 Example: blurring an image – the image can be broken into overlapping

tiles processed in parallel.

 Different parts of a program may use different parallel strategies during

execution.

https://en.wikipedia.org/wiki/OpenMP

Outline

 Parallel Examples

 Parallel Strategies

 Hardware

 Processes and threads

 Libraries & your own code

 Parallelization pitfalls

Hardware for Parallel Computation

 Parallel computing is used on systems of all sizes, from

your smartphone to clusters with thousands of processors.

Lenovo ThinkSystem HPC cluster

iPhone motherboard

CPUs and cores

 In the beginning...a CPU plugged into a

socket in the computer.
 The term “core” wasn’t in use but we’d call this a 1-core

CPU today.

 Multiple CPU computers had multiple CPU sockets.

 In 2001 IBM introduced their POWER4 CPU

which embedded 2 “cores” into one physical

CPU package.
 The two cores are manufactured on the same physical

semiconductor die.

 1 socket

AMD K5 in a Socket 7 (1996)

POWER4 circuit view

core
core

Modern configurations

 Quad Intel Xeon CPUs

 Up to 28 cores per CPU

 Dual AMD Epyc CPUs

 Up to 64 cores per CPU

 Single Intel CPU

 4 cores (Core-i3, ~$100)

 For PC and server hardware the high

end has very high core counts.

 Entry-level systems still have multiple

cores.

 Parallel capabilities are everywhere

these days.

CPUs and cores

 “CPU” typically refers today to the physical packaging of multiple cores.

 CPU, processor, and core are sometimes used interchangeably to mean

“core”.

1 CPU, 1 core

1 program at a time

1 CPU, 2 cores

2 programs simultaneously

1 CPU, 16 cores

16 programs simultaneously

Hyperthreading (Intel trademark)
“Logical Cores” or “hardware threads”

 CPUs with this feature have some additional

hardware that lets a program have its execution

state pre-loaded onto a core while another program

is actually executing on that core.
 The hardware allows the OS to switch the physical core to run the

other program very quickly.

 For many sets of programs (especially I/O bound)

this makes better use of the physical core.

Real physical core

Logical cores

Progam A Progam B

 Intel claims overall

system

performance can

be 30% better.

https://software.intel.com/content/www/us/en/develop/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application.html

 For regular CPUs the program switching is slower.

 For parallel CPU or compute bound programs the “extra cores” are of no

benefit and typically degrade overall system performance.

 Hyperthreading or logical cores does not double the computational resources.

Real physical core

Logical cores

Progam A Progam B

Progam A

Progam B

Off in main memory

Prog A is executing

No logical cores

Hyperthreaded Intel i5-9300h CPU

 A linear algebra matrix-matrix

multiply.

 4 real cores, 4 logical cores.

 Note performance increases stop

for cores > 4.

 CPU-bound programs can only

take advantage of real cores.

Count Your Cores

 Operating system utilities are the easiest

way.

 Windows Task Manager

 Linux command: lscpu

 Mac OSX:
[~] sysctl -n hw.logicalcpu

8

[~] sysctl -n hw.physicalcpu

4

Final Comments

 On your personal or lab computers, check to see if logical cores

are present.

 If so, beware of using all of them for a parallel computation.

 It’s best to use just the physical cores if CPU-bound.

 On the SCC any compute node that supports logical cores has

this feature disabled.

 All SCC core counts are real physical cores.

Outline

 Parallel Examples

 Parallel Strategies

 Hardware

 Processes and threads

 Libraries & your own code

 Parallelization pitfalls

Types of Parallelization

 On the SCC: queue parallelization.
 You have N files to process. Submit N jobs.

 Or, one job array that launches N jobs.

 This often requires little to no changes to your code…

 Parallel Libraries
 Use a library that internally implements some kind of parallelization.

 Multiple Processes
 Your program launches several copies of itself (or other programs) to solve the computational

problem.

 On one computer or many.

 Multiple Threads
 Your program creates threads, which are parts of the same program that can execute

independently of each other.

https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#array

Process

 A program running on a

computer.

 Processes can start other

processes.

 Properties:
 A private (non-shared) memory space

 A process ID

 Can exchange data with other

processes via files, pipes, network

connections, system shared memory,

etc.

https://en.wikipedia.org/wiki/Process_(computing)

 The operating system schedules the

process so that it shares computational

time with other processes.

https://en.wikipedia.org/wiki/Process_(computing)

Process Scheduling by Analogy

 Consider this 4-burner stove.

 There are 17 pots of soup to cook.

 Some must be kept very hot (lots of

time on a burner)

 The chef swaps pots frequently to

share the burners as fairly as

possible.

Process Scheduling by Analogy

 Consider this 4-burner stove.

 There are 17 pots of soup to cook.

 Some must be kept very hot (lots of

time on a burner)

 The chef swaps pots frequently to

share the burners as fairly as

possible.

 Consider a 4-core CPU

 There are 17 processes to run

 Some require a lot of CPU time

 The OS swaps processes on and

off the cores to share computation

time as fairly as possible.

Threads

 Python running threads on 22 cores.

 In the top program 100% of CPU means 1 core

is 100% busy.

 2186% means 22 cores are busy.

https://en.wikipedia.org/wiki/Light-weight_process

 A part of a process that can be

scheduled to run independently of the

rest of the process.

 Are created, run, and destroyed by a

process.

 Properties:
 Shares memory with each other and the original

process.

 Does not have a separate process ID.

 Can exchange data with other threads or with

other processes.

 The cooking analogy equivalent would be a

large pot that covered several burners.

https://en.wikipedia.org/wiki/Light-weight_process

Monitoring with

the top tool

 On the SCC, use top

 To see your processes only: top -u username

 100% of CPU means 1 core is 100% occupied.

 200% means 2 cores are used, etc.

 The RES column is the amount of RAM actively in use by the process.

 VIRT is the virtual memory – essentially the maximum amount of RAM the process might

request.

Parallelize with Processes or Threads?

 You can add parallelism to your program through changing your source

code or by calling libraries that implement parallel algorithms.

 Process-based parallelism:
 Keeps memory separated.

 Can potentially run on multiple computers and communicate via a network.

 Avoids issues with non-thread-safe code.

 Thread-based:
 All the program memory is accessible by all threads.

 Higher performance intra-thread communication compared with processes.

 More complicated parallelization patterns can be implemented.

 Easy to start & stop threads.

Outline

 Parallel Examples

 Parallel Strategies

 Hardware

 Processes and threads

 Libraries & your own code

 Parallelization pitfalls

Common Parallel Libraries
Library Parallelization Notes

Python multiprocessing Processes Standard language library.

Matlab parpool

Implicit parallelism

Processes

Threads

Standard language library.

Some operations will automatically multi-thread.

R parallel

foreach

Threads

Processes

Standard language libaries.

BLAS

(SCC: blis or openblas modules)

Threads Linear algebra. Widely used, for example by R and

Python (via the numpy library).

Intel Math Kernel Library (MKL) Threads Linear algebra and a lot more. Widely used.

FFTW Threads Fast Fourier Transforms.

OpenCV Threads Image processing.

Tensorflow Threads Machine learning.

PETSc Processes and threads Partial differential equation solver, multi-compute node.

Hadoop and Spark Processes and threads Multi-compute node, includes a parallel file system.

MPI Processes Low-level library for multi-node communication.

OpenMP Threads Low-level library (C/C++/Fortran) for multi-threading.

Example: BLAS

 The Basic Linear Algebra Subprograms library

provides a variety of functions for linear

algebra type calculations.

 This underlies a staggering number of

algorithms and computations in every area of

computing.

 High performance threaded BLAS libraries

continue to be an active area of computer

science research.
 SCC benchmark.

 Note poor performance of default

Linux system BLAS library!

Enable OpenMP Threading Libraries on the SCC

 Most software on the SCC that uses multiple

cores are built with the OpenMP threading

library.
 Including BLAS routines as commonly used by R and Python.

 The number of threads that will be used by your

program can be set using the environment

variable OMP_NUM_THREADS
 If a program uses the Intel MKL library the threads can be set

with MKL_NUM_THREADS instead

 The SCC sets OMP_NUM_THREADS=1 by

default.

 NEVER request more threads than there are

cores for the job.

#$/bin/bash -l

Request 8 cores for this job

The queue will set the variable

NSLOTS to 8

#$ -pe omp 8

We know a priori that this

multithreads

with OpenMP

module load nobel_winner/1.0

Allow for OpenMP threading.

export OMP_NUM_THREADS=$NSLOTS

Using NSLOTS means we will never ask

for more threads than cores.

Now run the program...is it faster?

nobel_winner ...etc...

Enable OpenMP on non-SCC computers

 Environment variables can be set in various ways on different operating

systems. Here is a guide for Windows, Linux, and Mac OSX.

 The OpenMP library looks for OMP_NUM_THREADS regardless of the

operating system.

 Mac users: the BLAS library used by R, Python, etc. is likely to be the

Apple Accelerate library. In that case try setting the variable

VECLIB_MAXIMUM_THREADS.

https://www.schrodinger.com/kb/1842

Know your software

 OpenMP is hardly the last word in multithreading.

 Different software may have different mechanisms for enabling threaded or

multiprocess calculations such as configuration options or command line flags.

 Read the documentation!

The Message Passing Interface (MPI)

 With the right software tools processes can be run on multiple computers

simultaneously and communicate with each other across a network.

 The MPI library is the most successful system for this in high performance

computing.
 On the SCC we standardized on the OpenMPI implementation: module avail openmpi

 Used on the world’s largest clusters with thousands of cores over

hundreds of compute nodes for single programs.

https://www.open-mpi.org/

MPI

 Since MPI uses separate

processes, the programmer has

to decide how and when data is

shared between them.

 MPI provides routines for

communication, parallel file I/O,

gathering and reducing data from

processes, and many more.

Using MPI in your software

 OpenMPI libraries are typically available for C, C++, Fortran, and Java.

 Wrappers libraries for MPI are readily available. These will typically work

with whichever MPI implementation is available
 OpenMPI, MVAPICH, Intel MPI, etc.

 MPI programming is an advanced programming skill. RCS is happy to

help – email us!

Language Library

Python mpi4py

R Rmpi

Julia MPI.jl

C# MPI.NET

mpirun

 MPI programs have a special program to

launch them, mpirun

 OpenMPI’s mpirun has many options that

control how MPI processes are started

and where they run.

 Try module help modulename on the SCC

for MPI-based modules

 On the SCC the configuration of compute

nodes for mpirun is handled by the

queue.

3 compute nodes, 4 cores each.

mpirun -np 12 my_mpi_prog

1 MPI process per compute node will run.

MPI process

mpirun -np 3 my_mpi_prog

3 MPI processes will run…all on node 0.

mpirun -np 3 --map-by node my_mpi_prog

3 MPI processes will run, one per node

export OMP_NUM_THREADS=4

mpirun -np 3 –-map-by node my_mpi_prog

3 MPI processes will run, one per node, with 4 threads

MPI process with

1 OpenMP thread

OpenMP thread

SCC MPI Nodes

 Request MPI-specific nodes on

the SCC with the qsub option:
 -pe mpi_16_tasks_per_node N

 Where N is a multiple of 16

 N=48  4 16-core nodes

 NSLOTS  48

 -pe mpi_28_tasks_per_node M

 Where M is a multiple of 28

 The only way to use multiple

compute nodes for a job on the

SCC is to use the MPI queues.

Network Type Bandwidth (Gbit/sec) Latency (ms)

10gig Ethernet 10 12.5

FDR Infiniband 13.64 0.7

EDR Infiniband 25 0.5

 These jobs run on dedicated compute

nodes connected with an Infiniband

network. There are a couple of versions

on the SCC.

 Latency is how quickly a data transfer can

be initiated. For MPI computations this is

often the limit, not the bandwidth.

 MPI jobs on a single compute node should

use the regular “-pe omp N” queues.

https://en.wikipedia.org/wiki/InfiniBand

Parallel Speedup

 There are many ways to parallelize code.

 …is it worth the effort and how much will it benefit you?

Amdahl’s Law

 The speedup ratio S is the

ratio of time between the

serial code (T1) and the time

when using N workers (TN):

𝑆 =
𝑇1
𝑇𝑁

=
𝑇1

𝑓 +
1 − 𝑓
𝑁

𝑇1

N = number of threads or

processes

f = fraction of program that

is serial

 This is the theoretical best speedup

achievable with parallelization.

Figure from Wikipedia.

https://en.wikipedia.org/wiki/Parallel_computing

Intel Xeon CPU E5-2650 v2 @ 2.60GHz. 16 physical cores, 2 sockets (scc-pi2)

 For small matrix sizes, using any number

of threads >1 is slower.

 Thread coordination takes longer than the

parallel speedup.

 Larger matrices have diminishing returns

for higher numbers of threads.

 For any given code you’ll likely find a

range above which more threads doesn’t

help.

 You have to test…test…and test some more!

 SCC suggestion – try 4 threads/cores.

1 -

AMD EPYC 7702 CPU @2 GHz. 64 physical cores, 1 socket

 Running on a 64-core system the

computation actually gets slower with too

many threads.

 It may be that some parts of your code

benefit from more threads than others –

try to pick a sensible number.

 The ideal thread number may change if

you change the CPU manufacturer, CPU

model, BLAS library, and so on.

Outline

 Parallel Examples

 Parallel Strategies

 Hardware

 Processes and threads

 Libraries & your own code

 Parallelization pitfalls

Parallelization Difficulties

 Some code cannot be parallelized – it

must be computed in order.

 Some loops or function calls can have

dependencies on other loop iterations

that make it impossible to parallelize.

 Sometimes you can alter a loop with

additional copies of data to make it

parallelize.
 Trading off memory usage for computation time.

 Choose your battles wisely

 Use profiling to identify code

that is worth improving.

x = np.random.random([100])

This cannot be parallelized.

for i in range(1,x.shape[0]-1):

x[i] = x[i] - x[i-1] + x[i+1]

Parallelization Difficulties

 Random number generation is not

straightforward.

 Computing RNG’s in parallel requires

different random seeds for each worker.

 Do not assume that different workers, if

seeded by default or from the system

clock, will be generating different

sequences of RNGs.

Parallelization Difficulties

 Be careful about the amount of I/O your

workers are performing.

 Disks, networks, etc. have bandwidth

limits.

 Excess workers can overload resources,

turning the problem from CPU-bound to

I/O bound.

How Many Workers*?

 I/O-bound programs may run

hundreds or thousands of workers
 These spend a lot of time waiting for data

from the network, the disk, the user, etc.

 CPU-bound programs should run

one worker per physical core.

 Memory-bound programs often use

fewer workers than cores.

* Worker: thread or sub-process of a program

Apache web server

….

Hundreds of copies of itself handle incoming web traffic

LAMMPS
molecular dynamics code

4 cores – 4 workers

What happens with too many workers?

 For CPU-bound problems, use no more than 1 worker per core.

 More than 1 results in workers competing with each other for access to

the cores and memory bandwidth.

 Performance will suffer significantly with excess workers.

 Watch for mixing multiple processes and multithreading (like OpenMP):

each process can end up launching many threads, overloading the cores!

