Introduction to Parallel Computing

0.1
Spring 2021

Research Computing Services
IS&T

BOSTON
UNIVERSITY

Outline

-[Parallel Examples]

= Parallel Strategies

= Hardware

= Processes and threads

= Libraries & your own code
= Parallelization pitfalls

BOSTON
UNIVERSITY

Introduction

= Many programs can perform simultaneous operations, given multiple
processors to perform the work.

= Generally speaking the burden of managing this lies on the programmer.

= Either directly by implementing parallel code
= Or indirectly by using libraries that perform parallel calculations.

= First, let’s look at an example of some problems that could be solved with
parallel computations.

BOSTON
UNIVERSITY

Limits ("bounds”) on Program Speed

= |nput/Output (I/O): The rate at which data can be read from a disk, a
network file server, a remote server, a sensor, a user’s physical inputs,
etc. limits the performance of the program.

= Memory: The quantity of memory on the system limits performance.
= Example: computer has 16 GB of RAM, data file is 64 GB in size.

= CPU (or compute): The speed of the processor is the limit on
performance.

BOSTON
UNIVERSITY

Why P aral I e I I Z e ? 42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz)

Typical Power

-1 (Watts)
Number of
L A : ; Logical Cores
of £ ™ v M snnee”
10 —-‘---Q ------------ ¢ e » PO G PUND MO SO e -

! ! ! !

1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

BOSTON
UNIVERSITY

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Example 1: Buoy data

20
= Each row is the water temperature in H-’w
Celcius at a depth of 2m from different 20
ocean buoys off of the coast of New L NMAAMWM
0

England.
20
o MAMAANNANAN
= We want to find the average daily a
temperature across all the buoys. 20
= i.e. sum them all vertically and divide by 5. - ; 1WN\JV\ er
20
- AVAVAYAVAVAVAVAVAY)
. e ; J\MM ‘\J\
How can we parallelize this’ 0 1000 2000 3000 4000 5000
time

BOSTON
UNIVERSITY

Example 2: Buoy data

- Buoy A

= Now consider the temperatures = 30-day smooth , ‘ ﬁ
from 1 buoy. This is daily data. ﬁ ’ F 1
How can we smooth the data by 15 i |
30 days?

= Smoothing: Lr
= Pick 30 days worth of data points starting at day ‘
0. Average them and assign that value to a new 5 N y \& b U k %

array at day 0. E
= Pick another 30 days of data starting from day
1. Assign that average value to day 1.
= FEtc. 0 1000 2000 3000 4000 5000

= How can we parallelize this?

BOSTON
UNIVERSITY

Example 3: k-mer counting

= k-mers are repeated sets of nucleotides in genomic sequences. Kk s the
length of the set.

= AGTCCC
= Split into k-mers of length 3: AGT, GTC, TCC, CCC

= A common problem in genomics is creating a histogram of all possible k-
mers from a data file.
AGTCCCCGTCTTGCCGCGCGGGGGCGEGEGCGCGGGAAAAAAGCCGLGLGGGEGEGELEGL
CCGCGGGAAGGCAGCCCCGCGGLCGLCGECEEGEGEGGAGGGEGELEGLCGELLCCGECEGEGEGEGEAG

CGGCCGGCTCCGGGGGAGGGACGGGGAAGGGGGCGLGCEEGGLCTGCCCTGLCGLC
CGCCCGCCGCCGCCGLCCCGCCTTCGCGCCCCCCCCCAAAAAACACCLCLCCCLCCGGA

...imagine this in a file a few dozen GB in size...
BOSTON
UNIVERSITY

Example 3: k—mel‘ Counting How can we split this up

into parallel
computations?

= Tasks: -
. : L _ Which steps can
= Read each line from the file. The file is compressed to save disk space. happen concurrently?

= In each line, find all possible k-mers for a fixed value k.

= Store all k-mers that are found and how often they occurred.
= Repeat for the next line.

= The output is the histogram for the whole file:

3-mer Occurrences

AGT 203
GTC 123
TCC 583
CCC 875

BOSTON
UNIVERSITY ...etc...

Outline

= Parallel Examples

- [Parallel Strategies]

= Hardware

= Processes and threads

= Libraries & your own code
= Parallelization pitfalls

BOSTON
UNIVERSITY

Basics of Parallelization

= Certain patterns of program execution lend them selves to specific
parallelization solutions.

= Recognizing these patterns in your code will help you choose which
Python parallelization approach to use.

= The solutions are strategies — it's up to you to adapt them to your specific
program.

= Here's a few examples. There are lots more than we have time for here!

BOSTON
UNIVERSITY

Embarrassingly Parallel

= Take a list of numbers: 123456738910

= And calculate its sum: 14+2+3+4+5+6+7+8+9+10

= This can easily be computed in

parallel. Break into 2 chunks, 142434445 + 6+7+8+9+10
sum them, and sum the chunks:

= Or break it down into even smaller
computaitons.

BOSTON
UNIVERSITY

Embarassingly Parallel

= Completely independent steps.

= EX.: multiple runs of a simulation, processing multiple data files with the
same script, calling 1 function over every element of an array.

e ™
Input file python Output
| | \\1/ Script py f||e 1
| | :
N Y,
Many Output g N Run
. python . . _
files Sy files Input file python Output simultaneously
s u \2/ script.py file 1 on separate
\/' \/' N J cores
Input file python Qutput
: script.py file 1

\/—
BOSTON
UNIVERSITY

Embarassingly Parallel

= Each iteration of a for loop might be completely independent of each
other.

X
I

[112/31415]

% Each loop i1teration has no dependence

% on any other loop iteration.
for 1 = 1:5
x (1) = some func(x(i))

BOSTON
UNIVERSITY

Divide & Conquer

= A problem can be broken into sub-problems that are solved

Independently.
Sub-problems 1
Problem and 2 can be
_ executed in
split parallel.
<Sub-prob|em 1 Sub-problem 2 >
/ split \ Or both 3’s with 2.
Gub-problem 3> <Sub-problem 3>
Merge/reduce
Solution > Example: the famous

MapReduce algorithm.

UNIVERSITY

https://en.wikipedia.org/wiki/MapReduce

Pipeline

= Steps in a pipeline must run sequentially.
= These stages could be internal functions in a program.

|

Time

stage 1

stage 2

stage 3

stage 4

Input
data stage 1
stage 2
stage 3
stage 4
i
output
—
dat
UNIVERSITY

Each stage executes
in parallel.

v

Y

Chunks of input data

Geometric

= The problem can be broken up into predictable patterns.

= Example: blurring an image — the image can be broken into overlapping
tiles processed in parallel.

£

BOSTON
UNIVERSITY

Parallel Task | Parallel Task Il Parallel Task IlI

R L

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread - e T \ :
\ & o= B . 2 T
e . e .
v - iy " _ ! https://en.wikipedia.org/wiki/OpenMP

= Different parts of a program may use different parallel strategies during
execution.

BOSTON
UNIVERSITY

Outline

= Parallel Examples
= Parallel Strategies
[- Hardware]
= Processes and threads
= Libraries & your own code
= Parallelization pitfalls

BOSTON
UNIVERSITY

Hardware for Parallel Computation

Lenovo ThinkSystem HPC cluster

= Parallel computing is used on systems of all sizes, from
your smartphone to clusters with thousands of processors.

BOSTON
UNIVERSITY

CPUs and cores

= |n the beginning...a CPU plugged into a

socket in the computer.

= The term “core” wasn’t in use but we’d call this a 1-core
CPU today.

= Multiple CPU computers had multiple CPU sockets.

= In 2001 IBM introduced their POWER4 CPU
which embedded 2 “cores” into one physical
CPU package.

= The two cores are manufactured on the same physical
semiconductor die.

= 1 socket

BOSTON
UNIVERSITY

POWERA4 circuit view

.
Modern configurations

= Single Intel CPU
= 4 cores (Core-i3, ~$100)

= Quad Intel Xeon CPUs
= Up to 28 cores per CPU

= For PC and server hardware the high
end has very high core counts.

= Entry-level systems still have multiple

= Dual AMD Epyc CPUs
= Up to 64 cores per CPU

cores.
= Parallel capabilities are everywhere
BOSTON
these days.

CPUs and cores

OO0
O OO0
O OO0
O OO0

1 CPU, 1 core 1 CPU, 2 cores 1 CPU, 16 cores
1 program at a time 2 programs simultaneously 16 programs simultaneously

= “CPU” typically refers today to the physical packaging of multiple cores.

= CPU, processor, and core are sometimes used interchangeably to mean
“core”.

BOSTON
UNIVERSITY

Hyperthreading (Intel trademark) N
“Logical Cores” or “hardware threads” / \

= CPUs with this feature have some additional
hardware that lets a program have its execution
state pre-loaded onto a core while another program

IS actually executing on that core.

= The hardware allows the OS to switch the physical core to run the
other program very quickly.

Real physical core

= For many sets of programs (especially 1/O bound)

this makes better use of the physical core. = |ntel claims overall
system

performance can
be 30% better.

https://software.intel.com/content/www/us/en/develop/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application.html

Logical cores

I\
[N

| 4

Progam A | i | Progam B

Prog A is executing

_

No logical cores

— Real physical core — |

Off in main memory

Progam B

/'

Progam A

= For regular CPUs the program switching is slower.

= For parallel CPU or compute bound programs the “extra cores” are of no

benefit and typically degrade overall system performance.

= Hyperthreading or logical cores does not double the computational resources.

BOSTON
UNIVERSITY

-
Hyperthreaded Intel i5-9300h CPU

275 -

250 -

225 -

200

150 -

125 1

100 -

175 A

Speedup Ratio. Matrix size 3000
4': !

BOSTON
UNIVERSITY

A linear algebra matrix-matrix
multiply.

4 real cores, 4 logical cores.

Note performance increases stop
for cores > 4.

CPU-bound programs can only
take advantage of real cores.

CPU Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz

Count Your Cores

Operating system utilities are the easiest

Windows Task Manager

tilizatior Speed .] 2.50.GH7
100% 2.88 GHz I0CKES i
e 2
r > hread Handle | B3 4
329 5829 228559 Vitarzat Enabled
. L1 cact 128 KB
Linux command: Iscpu e
p 6:23:36:54 d 3.0 MB
[1$ lscpu
. Architecture: x86 64
MaC OSX CPU op-mode(s): 32-bit, 64-bit
- Byte Order: Little Endian
[~] sysctl -n hw.logicalcpu CgU{S}: 28
8 | On-line CPU(s) list: 0-27
[~] sysctl -n hw.physicalcpu Thread(s) per core: 1
4 Core(s) per socket: 14
Socket(s): pi
NUMA node(s): 2
BOSTON Vendor 1ID: Genuinelntel
UNIVERSITY ily: 6

: 79
Model name: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz

N
Final Comments

= On your personal or lab computers, check to see if logical cores
are present.

= |f so, beware of using all of them for a parallel computation.
= |t's best to use just the physical cores if CPU-bound.

= On the SCC any compute node that supports logical cores has
this feature disabled.
= All SCC core counts are real physical cores.

BOSTON
UNIVERSITY

Outline

= Parallel Examples
= Parallel Strategies
= Hardware
[- Processes and threads]
= Libraries & your own code
= Parallelization pitfalls

BOSTON
UNIVERSITY

.
Types of Parallelization

On the SCC.: queue parallelization.
= You have N files to process. Submit N jobs.
= Or, one job array that launches N jobs.
= This often requires little to no changes to your code...

Parallel Libraries
= Use a library that internally implements some kind of parallelization.

= Multiple Processes

= Your program launches several copies of itself (or other programs) to solve the computational
problem.

= On one computer or many.

Multiple Threads

= Your program creates threads, which are parts of the same program that can execute
independently of each other.

BOSTON
UNIVERSITY

https://www.bu.edu/tech/support/research/system-usage/running-jobs/advanced-batch/#array

Process

= A program running on a
computer.

= Processes can start other
Processes.

= Properties:
= A private (non-shared) memory space
= A process ID

= Can exchange data with other
processes via files, pipes, network
connections, system shared memory,
etc.

BOSTON
UNIVERSITY

- 17:14:03 up 29 days,

: 2855 total,
%Cpu(s):
KiB Mem :
KiB Swap:

PID
12271
12272
12277
12268
122760
12274
12276
12269

10:44, 115 users,
9 running, 2831 sleeping, 12 stopped, 3 zombie
33.7 us, 1.9 sy, 0.0 ni, 64.2 id, 0.1 wa, 0.0 hi, 0.1 si,
26387792+total, 7611380 free, 17886752+used, 77399024 buff/cache

8388604 total, 8112 free, 8380492 used. 78756720 avail Mem

load average: 1.85, 1.40, 1.67

USER PR NI
bgregor 20 0
bgregor 20 ¢}
bgregor 20 0
bgregor 20 0
0
0
)
0

VIRT
206752
206752
206752
206752
206752
206752
206752
206752

RES
8156
8156
8168
8172
8168
8164
8164
8168

SHR S %CPU %MEM
1248 99.7
1248 99.7
1248 99.7
1268 99.0
1260 98.7

7
7
4

TIME+
:04.51
:04.53
:04.51
:04.50
:04.46
:04.49
:04.49
:04.48

COMMAND
python3
python3
python3
python3
python3
python3
python3
python3

bgregor 20
bgregor 20
bgregor 20
bgregor 20

1248 98.
1248 98.
1260 98.

0
0
.0
.0
0
0
0
0

OO O0ODODODODDOOD

= The operating system schedules the
process so that it shares computational
time with other processes.

https://en.wikipedia.org/wiki/Process_(computing)

0.0 st

https://en.wikipedia.org/wiki/Process_(computing)

Process Scheduling by Analogy

= Consider this 4-burner stove.

= There are 17 pots of soup to cook.

= Some must be kept very hot (lots of
time on a burner)

= The chef swaps pots frequently to
share the burners as fairly as
possible.

BOSTON
UNIVERSITY

Process Scheduling by Analogy

= Consider this 4-burner stove.

= There are 17 pots of soup to cook.

= Some must be kept very hot (lots of
time on a burner)

= The chef swaps pots frequently to
share the burners as fairly as
possible.

BOSTON
UNIVERSITY

Consider a 4-core CPU

There are 17 processes to run
= Some require a lot of CPU time

The OS swaps processes on and
off the cores to share computation
time as fairly as possible.

top - 10:45:13 up 45 days, 4:15, 109 users, load average: 11.04, 5.48, 4.87
Tasks: 2753 total, 7 running, 2726 sleeping, 5 stopped, 15 zombie
%Cpu(s): 88.2 us, 2.4 sy, 0.0 ni, 8.3 id, 0.4 wa, 0.0 hi, 0.7 si, 0.0 st
KiB Mem : 26387792+total, 4700312 free, 76957904 used, 18221971+buff/cache

I h re adS KiB Swap: 8388604 total, 444048 free, 7944556 used. 18075526+avail Mem

PID USER PR NI VIRT RES SHR S %CPU SMEM TIME+ COMMAND
20092 bgregor 20 0 3240428 99356 30496 0.0 5:48.43 python
7401 bgregor 20 © 622700 326404 3840 0.1 658:38.82 Xvnc
23940 bgregor 20 © 3065384 218048 72748 . 0.1 39:47.71 Web Content
16998 bgregor 20 0 59492 4948 1516 . 0.0 0:00.65 top
0 0
) ()

= A part of a process that can be 7372 bgregor 28 .0 14:14.01 xfumd
scheduled to run independently of the

rest of the process. .
= Python running threads on 22 cores.
= Are created, run, and destroyed by a = In the top program 100% of CPU means 1 core

Process. is 100% busy.
) = 2186% means 22 cores are busy.
= Properties:

= Shares memory with each other and the original

359472 14244

process.
= Does not have a separate process ID. = The cooking analogy equivalent would be a
= Can exchange data with other threads or with large pot that covered several burners.

other processes.

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/Light-weight process

https://en.wikipedia.org/wiki/Light-weight_process

top - 10:45:13 up 45 days, 4:15, 109 users, load average: 11.04, 5.48, 4.87
Tasks: 2753 total, 7 running, 2726 sleeping, 5 stopped, 15 zombie
%Cpu(s): 88.2 us, 2.4 sy, 0.0 ni, 8.3 id, 0.4 wa, 0.0 hi, 0.7 si, 0.0 st

MOnItOrIﬂ Wlth KiB Mem : 26387792+total, 4700312 free, 76957904 used, 18221971+buff/cache
g} KiB Swap: 8388604 total, 444048 free, 7944556 used. 18075526+avail Mem

the top tool PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
20092 bgregor 20 0O 3240428 99356 30496 R 2186 0.0 5:48.43 python
7401 bgregor 20 © 622700 326404 3840 S 4.9 0.1 658:38.82 Xvnc
23940 bgregor 20 © 3065384 218048 72748 S .9 0.1 39:47.71 Web Content

16998 bgregor 20 © 59492 4948 1516 R .3 0.0 0:00.65 top
7572 bgregor 20 © 359472 14244 .3 0.0 14:14.01 xfwmd
=Ia alallsd alla (] = { =4 A L] i

= Onthe SCC, use top
= To see your processes only: top -u username

= 100% of CPU means 1 core is 100% occupied.

= 200% means 2 cores are used, etc.
= The RES column is the amount of RAM actively in use by the process.

= VIRT is the virtual memory — essentially the maximum amount of RAM the process might
request.

BOSTON
UNIVERSITY

L
Parallelize with Processes or Threads?

= You can add parallelism to your program through changing your source
code or by calling libraries that implement parallel algorithms.

= Process-based parallelism:
= Keeps memory separated.
= Can potentially run on multiple computers and communicate via a network.
= Avoids issues with non-thread-safe code.

= Thread-based:
= All the program memory is accessible by all threads.
= Higher performance intra-thread communication compared with processes.
= More complicated parallelization patterns can be implemented.
= Easy to start & stop threads.

BOSTON
UNIVERSITY

Outline

= Parallel Examples
= Parallel Strategies
= Hardware
= Processes and threads
[- Libraries & your own code]
= Parallelization pitfalls

BOSTON
UNIVERSITY

Common Parallel Libraries

Python multiprocessing Processes Standard language library.

Matlab parpool Processes Standard language library.

Implicit parallelism Threads Some operations will automatically multi-thread.

R parallel Threads Standard language libaries.

foreach Processes

BLAS Threads Linear algebra. Widely used, for example by R and
(SCC: blis or openblas modules) Python (via the numpy library).

Intel Math Kernel Library (MKL) Threads Linear algebra and a lot more. Widely used.

FFTW Threads Fast Fourier Transforms.

OpenCV Threads Image processing.

Tensorflow Threads Machine learning.

PETSc Processes and threads Partial differential equation solver, multi-compute node.

Hadoop and Spark

MPI

‘ (]
OpenMP

Processes and threads

Processes

Threads

Multi-compute node, includes a parallel file system.
Low-level library for multi-node communication.

Low-level library (C/C++/Fortran) for multi-threading.

.
Example: BLAS

80 A

N Cores: 1 single Precision

= The Basic Linear Algebra Subprograms library
provides a variety of functions for linear
algebra type calculations.

= This underlies a staggering number of
algorithms and computations in every area of
computing.

60 1

GFLOPS

40

blis

mikl

mkl 2019
oblas

= High performance threaded BLAS libraries sys
continue to be an active area of computer 1000 5000 2000 2000 000

science research. Matrix Size
= SCC benchmark.

= Note poor performance of default
Linux system BLAS library!

20 A

EEER:

BOSTON
UNIVERSITY

.
Enable OpenMP Threading Libraries on the SCC

= Most software on the SCC that uses multiple #$/bin/bash -1

cores are built with the OpenMP threading 4 Request 8 cores for this job

library. # The queue will set the variable
= |Including BLAS routines as commonly used by R and Python. # NSLOTS to 8
= The number of threads that will be used by your #5 -pe omp 8
program can be set using the environment # We know a priori that this
variable OMP_NUM_THREADS multithreads
= |f a program uses the Intel MKL library the threads can be set # with OpenMP
with MKL_NUM_THREADS instead module load nobel winner/1.0
= The SCC sets OMP_NUM_THREADS=1 by

Allow for OpenMP threading.

default. export OMP NUM THREADS=

Using NSLOTS means we will never ask
for more threads than cores.

= NEVER request more threads than there are
cores for the job.

1 1 2
BOSTON # Now rgn the program...is 1t faster=
UNIVERSITY nobel_w1nner ...etc...

Enable OpenMP on non-SCC computers

= Environment variables can be set in various ways on different operating
systems. Here Is a guide for Windows, Linux, and Mac OSX.

= The OpenMP library looks for OMP_NUM_THREADS regardless of the
operating system.

= Mac users: the BLAS library used by R, Python, etc. is likely to be the
Apple Accelerate library. In that case try setting the variable
VECLIB_MAXIMUM_THREADS.

BOSTON
UNIVERSITY

https://www.schrodinger.com/kb/1842

Know your software

= OpenMP is hardly the last word in multithreading.

= Different software may have different mechanisms for enabling threaded or
multiprocess calculations such as configuration options or command line flags.

= Read the documentation!

BOSTON
UNIVERSITY

The Message Passing Interface (MPI)

= With the right software tools processes can be run on multiple computers
simultaneously and communicate with each other across a network.

= The MPI library is the most successful system for this in high performance
computing.
= Onthe SCC we standardized on the OpenMPI| implementation: module avail openmpi

= Used on the world’s largest clusters with thousands of cores over
hundreds of compute nodes for single programs.

BOSTON
UNIVERSITY

https://www.open-mpi.org/

MPI

= Since MPI uses separate

processes, the programmer has
to decide how and when data is
shared between them.

= MPI provides routines for

communication, parallel file 1/0O,
gathering and reducing data from
processes, and many more.

Using MPI In your software

= OpenMPI libraries are typically available for C, C++, Fortran, and Java.

= Wrappers libraries for MPI are readily available. These will typically work

with whichever MPI implementation is available
= OpenMPI, MVAPICH, Intel MPI, etc.

Python mpi4dpy
R Rmpi
Julia MPLjl
C# MPIL.NET

= MPI programming is an advanced programming skill. RCS is happy to
help — email us!

BOSTON
UNIVERSITY

3 compute nodes, 4 cores each.

MPI process —50 | O OO0 O | O

mpirun olo| [olo| [o]o

mpirun -np 12 my mpi prog
1 MPI process per compute node will run.

= MPI programs have a special program to

launch them, mpirun ol o
O
= OpenMPI's mpirun has many options that mpirun —np 3 my mpi prog
control how MPI processes are started 3 MPI processes will run...all on node 0.
and where they run.
= Try module help modulename on the SCC O O O

for MPI-based modules

mpirun -np 3 --map-by node my mpli prog

: . 3 MPI processes will run, one per node
= On the SCC the configuration of compute P P

nodes for mpirun is handled by the MPI process with
gueue. 1 OpenMP thread |

~O0 | @ O | @ O| @
@ o @ o @ o
X

BOSTON /
export OMP NUM THREADS=4
OpenMP thread b — —

mpirun -np 3 —-map-by node my mpli prog
3 MPI processes will run, one per node, with 4 threads

Bandwidth (Gbit/sec) | Latency (us)

SCC MPl NOdES 10gig Ethernet 10 12.5
FDR Infiniband 13.64 0.7
- EDR Infiniband 25 0.5
= Request MPI-specific nodes on
the SCC with the gqsub option: = These jobs run on dedicated compute
" -pe mpi_16_tasks_per_node N nodes connected with an Infiniband
" Where N is a multiple of 16 network. There are a couple of versions
= N=48 - 4 16-core nodes on the SCC.
= NSLOTS - 48 _ _
= _pe mpi_28 tasks_per node M " Latencyis how quickly a data t_ransfer_ can
- Where M is a multiple of 28 be initiated. For MPI computations this is
= The only way to use multiple often the limit, not the bandwidth.

compute nodes for a job on the
SCC isto use the MPIl queues. = MPI jobs on a single compute node should

use the regular “-pe omp N” queues.
BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/InfiniBand

R
Parallel Speedup

= There are many ways to parallelize code.

= ...is it worth the effort and how much will it benefit you?

BOSTON
UNIVERSITY

Amdahl's Law
20.00 —
Amdahl’'s Law 1800 A
/ 4 Parallel Portion
16.00 7 ——50%
/ —T75%
. . 14.00 —90%
= The speedup ratio S is the oo |4 %
ratio of time between the § o /
. . - y —
serial code (T,) and the time ao A | A
when using N workers (T,): »)
/
4.00 V/ —
N el
S Tl T1 =1
—_ —— 0.00
f Number of Processors

_ = This is the theoretical best speedup
N = number of threads or .)))
processes achievable with parallelization.

BOSTON — :
f = fra_ctlon of program that

Is serial Figure from Wikipedia.

https://en.wikipedia.org/wiki/Parallel_computing

Intel Xeon CPU E5-2650 v2 @ 2.60GHz. 16 physical cores, 2 sockets (scc-pi2)

Speedup Ratio and Matrix Size

T aeal = For small matrix sizes, using any number

141 T 0 of threads >1 is slower.

121 73 Joooxt000 = Thread coordination takes longer than the
—e— 3000x3000 ’ parallel speedup.

= Larger matrices have diminishing returns
for higher numbers of threads.

= For any given code you'll likely find a
range above which more threads doesn’t
help.

N Cores = You have to test...test...and test some morel!

= SCC suggestion — try 4 threads/cores.
UNIVERSITY

AMD EPYC 7702 CPU @2 GHz. 64 physical cores, 1 socket

20.0 1

17.5 4

15.0 +

12.5 4

10.0 ~

7.5 1

5.0 +

2.5~

0.0

Speedup Ratio and Matrix Size

]
—== |deal J

—e— 1000x1000
3000%3000 /'
I

T T T T T T T T T
0 a 16 24 32 40 48 56 64
N Cores

BOSTON
UNIVERSITY

Running on a 64-core system the
computation actually gets slower with too
many threads.

It may be that some parts of your code
benefit from more threads than others —
try to pick a sensible number.

The ideal thread number may change if
you change the CPU manufacturer, CPU
model, BLAS library, and so on.

Outline

= Parallel Examples

= Parallel Strategies

= Hardware

= Processes and threads

= Libraries & your own code
-[Parallelization pitfalls]

BOSTON
UNIVERSITY

X = np.random.random([100])

Parallelization Difficulties

This cannot be parallelized.
for i in range(l,x.shape[0]-1):
= Some code cannot be parallelized — it x[1] = x[1] = x[1-1] + x[1+1]

must be computed in order.

= Some loops or function calls can have
dependencies on other loop iterations = Choose your battles wisely
that make it impossible to parallelize.

_ _ = Use profiling to identify code
= Sometimes you can alter a loop with that is worth improving.

additional copies of data to make it

parallelize.
= Trading off memory usage for computation time.

BOSTON
UNIVERSITY

N
Parallelization Difficulties

= Random number generation is not
straightforward.

= Computing RNG’s in parallel requires
different random seeds for each worker.

= Do not assume that different workers, if
seeded by default or from the system
clock, will be generating different
sequences of RNGs.

BOSTON
UNIVERSITY

Parallelization Difficulties

= Be careful about the amount of I/O your
workers are performing.

= Disks, networks, etc. have bandwidth
limits.

= Excess workers can overload resources,
turning the problem from CPU-bound to
/O bound.

BOSTON
UNIVERSITY

How Many Workers*?

= |/O-bound programs may run
hundreds or thousands of workers

= These spend a lot of time waiting for data
from the network, the disk, the user, etc.

= CPU-bound programs should run
one worker per physical core.

= Memory-bound programs often use
fewer workers than cores.

BOSTON
UNIVERSITY

Apache web server

JO00000gog-

Hundreds of copies of itself handle incoming web traffic

LAMMPS
molecular dynamics code

O T O E

4 cores — 4 workers

* Worker: thread or sub-process of a program

What happens with too many workers?

= For CPU-bound problems, use no more than 1 worker per core.

= More than 1 results in workers competing with each other for access to
the cores and memory bandwidth.

= Performance will suffer significantly with excess workers.

= Watch for mixing multiple processes and multithreading (like OpenMP):
each process can end up launching many threads, overloading the cores!

BOSTON
UNIVERSITY

