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Objective:
Improve low-order (LO) models for the prediction of 
fan broadband interaction noise by addressing gaps 
in existing methods using both computation and 
experimentation. The main gaps being considered 
are a LO model for the inflow to an exit guide vane 
and full-scale validation of the LO exit guide vane 
response.

Project Benefits:
Elimination of time-consuming, high-fidelity 
simulations or prototype development and testing in 
order to assess broadband noise levels created by 
high bypass turbofans.

Research Approach:

• Develop a surrogate model for a fan wake using  
machine learning. Create the necessary training 
data and compare different machine learning 
methods. Determine both the mean and 
turbulence wake profiles upstream of the exit 
guide vane using only rotor-based information. 

• Test the current LO exit guide vane response 
method’s ability to predict the broadband noise 
associated with a full-scale case using available 
experimental data. 

Major Accomplishments (to date):
• Data set : 4 geoms, 7 rotor speeds, 7 mass flows
• ML methods for mean flow wake, TKE, w

– SDT related geometries
– Single input -> single output ML: 3 methods tested

• Spline, XGBOOST/decision tree, DNN
– Multi output ML : CNN started

Future Work / Schedule:
• Winter: LO response tested on full-scale rig data

CLEEN I config
• Winter/spring: ML 

– New geometries  -> larger data set
– Additional input parameters 
– ML for rotor force distribution
– Further CNN development
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Fan broadband noise background

• Low-order methods aimed at assisting in the design phase use :
– Information about the rotor wake turbulence intensity and lengthscale (as well as mean flow)
– Then the response of the FEGV is computed and subsequently the noise produced by the 

interaction

• Rotor wake info currently taken from simulation or experiment … 
– Method not fully “low-order” 

fan FEGV

Largest broadband contributor in a fan stage 
is from rotor wake interaction with FEGV

(This also produces the tonal noise) 
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Our project 

Main part: 
Create a surrogate model for the rotor wake flow (eliminating need for computation or experiment in 
order to define input for the low-order FEGV calculation) 

Use machine learning

End goal: provide fan geometry, RPM, mass flow and perhaps some other information together with 
duct geometry and have the surrogate model provide the mean flow and turbulence intensity and 
length scale just upstream of the FEGV

Secondary part: 
Improve the low-order FEGV response method:  full scale validation, relaxation of some assumptions

fan FEGV
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Machine learning
We have considered 2 basic methods so far
Method 1: single output

Define rotor geometry 
on %radial strips:
• chord, 
• stagger, 
• position of t.e.
• t.e. bdy layer 

thickness

Give RPM, mass flow
Provide flow values on portion of 
NxMxP grid in the gap region
• Streamwise velocity magnitude
• TKE (k)
• Turbulent dissipation (e or w)

Predict flow values on 
ordered grid points 
• Streamwise velocity mag
• TKE (k)
• Turbulent dissipation

Used splines, MARS, XGBOOST with decision tree, DNN

Tested necessary values of N, M, P (3D grid in gap)
Tested method for selecting which data to use for training/testing 

Random selection out of N, M, P  (what %: 80% train, 20% test, etc.)
Leave out entire N (axial locations), leave out entire mass flow cases, etc.
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Database for the ML thus far

Example: SDT cold.  EXP data (digitized from NASA TM, fan alone performance)

• Use RANS (k-w), rotor alone simulations in rotor frame

• Geometries : based on NASA SDT 
– CAD (cold), 7808 RPM (hot), 11607 RPM (hot), 12657 RPM (hot)

• 7 RPM : 50%, 60%, 70%, 77.5%, 87.5%, 95%, 100%
• 7-10 mass flow rates at each RPM

• Total of 268 cases

50%
60%

70%
77.5%

87.5%
95%
100%
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ML method I
2 step process for the machine learning 

1st : learn functions related to rectification of the wake

2nd: learn the flow values in the wake 
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ML method I

Example: streamwise velocity, XGBOOST

• Model:  v_total ~ omega + r_te + r_new + th_te + th_new +
x_te + th_percent + massFlow + lowBLnor + upBLnor +
chord + bladeAngle

• Test MSE: 37.7
• R-squared: 0.996
• k: 3 - 28 
• i: 2 - 30 Data very near hub and tip are ignored

When randomly use 80% of NxMxP gap points

Very good reconstructions of points not used.

Streamwise velocity

HUB

TIP
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ML method I

Example: streamwise velocity, XGBOOST, some chosen at random from all wake location points

When leave out some entire mass flow cases 

Streamwise velocity shape is fine, magnitude is not so good

Streamwise velocity

w

Turbulence dissipation 
parameter is fine (mass flow not 
an important parameter!)
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ML method I
Example: leave out entire rotor speeds and then try to predict

Decision tree (XGBOOST) leads to “nearest neighbor” type 
predictions – shape ok, magnitude off

DNN approach leads to good mean values on a passage but 
wake shapes are off

Note : 
Impact on low-order calculations ….

Wake shapes (passage profile) needed for tonal noise

Average value on passage needed for broadband noise
DNN works fine

Streamwise velocity  
(XGBOOST)

Streamwise velocity  
(DNN)
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Machine learning method II
Method 2: multi output

Use all rotor information as one input (no radial slicing)

Learn axial cut “image” as one output 

ML: Decoder part of Convolution Neural Network

1D tensor: 1X199

256
175

7X25X1 14x50x32

28x100x1

Rotor geometry
• chord, 
• stagger, 
• position of t.e.
• t.e. bdy layer thickness
For each strip, combined into one vector
+ RPM, mass flow

28

100
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ML method II
Example: CNN, TKE, random selection of axial slices to use for training and testing

• Input: 199 
28 * (r_te, th_te, x_te, lowBLnor, upBLNor, chord, bladeAngle) + 
omega + massFlow + x

• k: 2 - 29
• i: 1 - 30

Must determine reason for jitter
Will explore further options for numbers of layers in CNN etc.

Used 80% of axial slices for training

HUB

TIP
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Final ML comment
Historical empirical wake evolution fittings utilized rotor force 
In our inputs, we have utilized boundary layer trailing edge thickness and will also use rotor force in the 
future

Only way to know these parameters currently is to run a simulation, which defeats our purpose 

We have efforts ongoing to :
• learn the wake without these parameters as input
• learn these inputs as a first step so they can be used in the wake ML
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Summary and future work

Wake parameter surrogate model

Have developed viable single output method :
At this moment would suggest combination of DNN and XGBOOST to fully describe wake

Have demonstrated potential for CNN for multi output
Allows clearer use of rotor case as 1 input and forces “physical” connection of output values
Must fully develop and test 

Rotor force data, inflow and outflow angles etc. have not been used as input yet 
Both methods will be tested using larger set of rotor input parameters

Test ability to learn rotor force and rotor trailing edge boundary layer thickness

Must increase database, include larger differences in geometry and test ML predictions

Noise prediction (focus on low-order FEGV response)

Full scale test data (CLEEN I) being curated for use in validation study 

Year 2 effort includes expansion of low-order capability: nonisotropic turbulence, circumferential asymmetry


